
Københavns Universitet: Bachelorstudiet i fysik

Projekt Uden for Kursusregi 2020

Enhancing Physics Research Potential of High Energy Physics
Experiments Using Machine Learning Techniques.

Performed on V0 candidates from LHC Run 2

Authors:
Jonas Vinther KU- ID: dlk339
Johann Bock Severin KU- ID: msk377
Jakob Hallundbæk Schauser KU- ID: pwn274
Christian Kragh Jespersen KU- ID: htd809

Advisor:
Troels Christian Petersen Email: petersen@nbi.ku.dk

This report consist of 26 pages of main text and 13 pages of appendices.

The report was handed in the 30th of October, 2020.

i

Contents

1 Introduction 1

2 Data and Theory 1
2.1 ATLAS Detector Layout and V0-particles . 1
2.2 Data and Monte Carlo Simulation . 3
2.3 Classification Algorithms . 4

2.3.1 Simple Cuts . 4
2.3.2 Fisher . 4
2.3.3 Decision Trees . 4
2.3.4 Boosted Decision Trees . 5

2.4 Investigative Algorithms . 6
2.4.1 Shapley Additive Explanation (SHAP) Values . 6
2.4.2 Correlations and Maximal Information Coefficient . 7
2.4.3 Receiver Operating Characteristic (ROC) . 8

3 Analysis 9
3.1 Fit and Estimates . 9

3.1.1 K0
S (K-Short) . 9

3.1.2 Λ/Λ (Lambda/Lambda-bar) . 9
3.2 Parameters and Correlation . 9

3.2.1 Correlations with Mass . 9
3.2.2 Correlations between Features . 10
3.2.3 Feature Importance . 13

3.3 Comparison of Data and Monte Carlo . 13
3.3.1 Reweighting . 14

3.4 Training in Monte Carlo/Data and Classifying Real Data . 15
3.5 Model Evaluation . 16

4 Results 17
4.1 K-Short (K0

S) . 17
4.1.1 Classical Classification Models . 17
4.1.2 Reweighting . 17
4.1.3 Boosted Decision Trees . 18

4.2 Lambda (Λ) and Lambda-bar (Λ̄) . 19
4.2.1 Model Performance on the Lambda . 20

4.3 Cross-validating Models . 21
4.3.1 ROC - validation . 21
4.3.2 Correlations between model predictions . 21

4.4 Final Mass Estimate . 22

5 Discussion 23
5.1 Correlations . 23

5.1.1 Correlations with Mass . 23
5.1.2 Correlations Between Predictions . 23
5.1.3 Lambda Features . 24

5.2 Model Evaluation Methods . 24
5.3 Advantages of the Monte Carlo Simulation . 24
5.4 Accuracy . 25

5.4.1 Accuracy of Mass Predictions . 25
5.4.2 Choice of Model . 25

5.5 Future Work . 25

ii

6 Conclusion 25
6.1 Acknowledgements and Final Remarks . 26

7 Appendix 27
7.1 Honorable Mentions . 27

7.1.1 XGBoost on UMAP . 27
7.1.2 uBoost . 27
7.1.3 Uncertainty in Data . 27
7.1.4 COVID Modeling . 27
7.1.5 Hyper-parameter Optimization . 27
7.1.6 Neural Networks . 28
7.1.7 PCA before XGBoost . 28
7.1.8 Comparing the algorithms . 28

7.2 Appendix (Figures and tables) . 29
7.2.1 Distributions of Data and MC . 29
7.2.2 Correlation tables for Λ and Λ̄ . 31
7.2.3 Signal Distribution . 33
7.2.4 Model comparison . 33
7.2.5 Reweighting . 33
7.2.6 Displaying Decision Boundaries in Higher Dimensions / Decision Boundaries for Corre-

lated Features . 35
7.2.7 ROC-curves for XGBoost in MC . 35
7.2.8 Fitting the Uncertainties . 36

iii

1 Introduction

In many branches of physics, new discoveries are made
by quantitatively identifying a signal peak upon a back-
ground of noise. Because of the importance that peak
finding and classifying has in all branches of physics,
these methods will be the main focus of this project.
In High Energy Physics, this could be the peak of a
new particle found amongst the almost uncountable
amount of collisions happening every second the LHC
is running. Few collisions actually produce the parti-
cles we search for, so finding and quantifying small
peaks is the cornerstone of making the actual discov-
ery. Obtaining enormous amounts of data is the bread
and butter of the different LHC experiments. In this
project we work with data from the ATLAS experi-
ment.

The seemingly endless amount of data is expanded
with events from a Monte Carlo (MC) simulation built
upon first principles and our understanding of the
detector. This all makes the ATLAS data-set of V0-
particles a playground to develop and apply tools for
classification of data. The MC simulation provides
valuable insight into the training methods possible
when the true particle type in simulation is known,
as well as providing a framework for validating our
procedure.

In this project, the main goal is to explore and test
large scale classification tools and evaluate the mod-
els in data where the particle type is unknown and the
mass peak is the best indicator. The project is struc-
tured such that:

• In section 2 the ATLAS experiment, data set and
the main features will be presented. This will
be followed by a description and comparison of
the classification algorithms used in the project.

• In section 3 the analysis and quantification of
the data set based on considerations described
in the first half of the report will be made. This
includes finding the peaks of particles, compar-
ing the Monte Carlo simulation with real data,
as well as describing correlations and ranking
the importance of the features in the data set.

• The main results of the project will be presented
in section 4, where the performance of different
algorithms and methods for classification and
evaluation will be compared.

• Lastly, the strengths and shortcomings of the meth-
ods will be discussed in section 5. This section

will also contain suggestions for future work with
the project.

When reading the paper, note that:
- All authors have contributed equally to the project.
- If not otherwise stated, we use natural units (e.g.
c = 1) and when referring to ”mass” in the paper, the
invariant mass is meant.
- We interchangeably use K0

S/K-Short to refer to the
same particle, as well as Λ/Lambda and Λ/Lambda-
bar respectively
In general this project did not focus on high energy/particle
physics, but rather on how to treat signal-finding in
large amounts of data using high-level statistical meth-
ods and machine learning. Many of our findings are
thus methods that aren’t necessarily relating to a clear
goal, but investigating the different angles of attack-
ing the problem of finding and quantifying peaks. When-
ever possible we have attempted to quantify our find-
ings, since the project focuses on providing a data-
driven approach for peak-finding and validation.

2 Data and Theory

In this section the experiment and the data set will
be presented. Subsequently, the algorithms of choice
and a priori considerations for model evaluation meth-
ods will be presented.

2.1 ATLAS Detector Layout and V0-particles

In the LHC, two protons beams are accelerated to a
relativistic mass of 6.5TeV. The beams are directed to
collide in the middle of the ATLAS detector (or the
other detectors in other experiments), which consists
of multiple layers of different detectors.

As the purpose of this project is to optimize and ap-
ply different algorithms for peak finding and classifi-
cation, the project aims to analyse data on the phys-
ically well understood and frequently occurring V0-
particles. V0 denotes a heavy neutral particle, that
decays into two oppositely charged daughter parti-
cles. The name of the V0 is well-chosen: The shape of
the decay resembles a ”V” and it has a total charge of
0.
See table 1 for summary statistics of the relevant V0

particles.
Placing the z-axis of our coordinate system along the
collision path, the ATLAS detector is built up of mul-
tiple cylinders consisting of different types of detec-

1

Table 1: Physical properties of considered V0 particles [1]

Half-time [s] Charged Decay Neutral Decay Charged/Neutral-ratio [%] Mass [MeV]
KS (8.954± 0.004) · 10−11 π+ + π− π0 + π0 69.20±0.05 497.611± 0.013
Λ (2.631± 0.020) · 10−10 p + π− n + π0 63.9± 0.5 1115.683± 0.006
Λ̄ (2.631± 0.020) · 10−10 p̄ + π+ n + π0 63.9± 0.5 1115.683± 0.006

tors extending out in the xy-plane. Since the focus of
the detector is to measure the momentum from the
tracks of charged particles, a 2T magnetic field is ap-
plied in the xy-plane, making it possible to determine
the momenta for charged particles. The ATLAS inner
detector consists of three detector types: Pixel (placed
at 45.5mm < R < 242mm), SCT (255mm < R <

549mm) and TRT detectors (554mm < R < 1082mm),
made of 4, 8 and 73 layers respectively. The Pixel
detector provides a high resolution detector close to
where the protons collide, the interaction point, and
is vital for precise tracking. The SCT is similar to the
pixel detector but with ’larger’ pixels which allows it
cover a larger area, and thus compliments the pixel
detector in measuring precise hits close to the interac-
tion point. The combination of these precision track-
ers at small radii with the 4mm TRT straw tubes at
a larger radius gives robust and precise track recon-
struction. The tracks are described by the following
parameters1: Transverse momentum (pT), the trans-
verse and longitudinal impact parameters of the tracks
d0 and z0, as well as the angle φ and pseudo-rapidity
η2. The mass of the particle is not measured directly.
It is calculated under a given decay hypothesis, using
the track features and covariances.

The objective is then to find the V0-candidates given
these many tracks. To do this two oppositely charged
tracks are selected, 3 and the hypothesis that they share
a common vertex is tested. If the resulting chi-square
is < 15 and the vertex is consistent with that of the
proton collision, the candidate is added to the dataset.
The track features can now be used to calculate dif-
ferent attributes regarding this candidate along with
their uncertainties.4

An example of a V0 reconstruction can, along with the
most obvious physical parameters, be seen in figure 1.

1And their co-variance matrix
2Defined as a transformation of the angle θ with regards to the

beam direction: η = −ln[tan(θ
2)]

3The charge is found from the curvature of the track due to the
applied magnetic field

4A notable background effect from this procedure is that light
can create e−e+ pairs near a nucleus which would be false posi-
tive V0-candidates. This background is proportional to the detector
matter density.

The useful parameters calculated from the vertex are5:

• V0 mass: The calculated rest mass of the V0-
particle assuming it to be a certain type.

• cos θ: Cosine of the angle between the summed
momentum vector of the two decay products
and the line from the primary vertex to the V0-
vertex.

• V0 rxy: The distance from the V0-vertex to the
center of the accelerator.

• a0 xy and a0 z: The location of the V0-vertex
measured from the primary vertex.

• η: pseudorapidity; the transformation of the an-
gle of the V0 vertex with respect to the beam
(see footnote 2).

The features denoted by pv0 refers to the attributes
of a primary vertex (i.e. the points of proton collision)
and can thus contain a lot of duplicates. The features
denoted by v0 refers to the attributes of the tracks
originating from the V0-vertex, except for v0 x/y/z
which denotes the location of the V0-vertex.

As there is a lot of data, throwing away noisy data
and unlikely candidates is often better than having a
raw, noisy sample. Therefore, cuts can be made to
improve the sample, some of which were made be-
fore the data was handed to us, since they are made
during the reconstruction and are required for the re-
construction to be considered correct.

• χ2 < 15, as anything higher is too uncertain and
might contribute to mislabeling.

• Conservation of charge for V0-decays implies
that the daughter particles be either neutral or
of opposite charge. Thus, the reconstruction re-
quires Q1 ·Q2 ≤ 0

Other cuts are for convenience and robustness, for ex-
ample:

5The calculation of these from the data collected in ATLAS are
complicated and not within the scope of this project

2

Figure 1: A schematic overview of the calculated parameters from the reconstruction of a V0-particle decay.

• A good way to improve the robustness would
be to force |η| < 2.5 as the detector layout works
best for small rapidities.

• Since most particles do not decay instantaneously,
it is also appropriate to require a minimum flight
length.

It was quite late that the ATLAS common practice of
making these cuts became known to us. Therefore we
were not able to implement them globally across the
whole project, and it was interesting to implement
our own methods. For the sake of consistency we
have left them out.

For the main part of this project, the specifics of the
decays do not matter, but if further analysis highlights
a feature or sets of features, the basic understanding
of the physical process serves as a sanity check, and
provides further understanding.

2.2 Data and Monte Carlo Simulation

The data used in this project consists of two sets of
two different data types: Monte Carlo simulated (MC)
data and real data from the ATLAS detector. We gen-
erally used only one MC file and one ATLAS data file.
The ATLAS data was collected early in LHC run 2.
The data used in our analysis is about 2 billionths of

the full run 2 data.

The MC simulation is very adept for getting an intu-
ition for finding the signal, because of clear labels of
what is definitely signal and what is definitely back-
ground. This can provide a valuable resource in analysing
the real data. However, real data has many quirks
that the MC data set does not accurately portray. This
implies some pitfalls when using the simulated data,
and makes the raw MC-data distinguishable from the
raw real data.

However, the discrepancy between data and MC pro-
vides a way of investigating possible new physical
discoveries. Since the MC-simulation is simulated from
as fundamental a starting point as possible (first prin-
ciples), and then run through a detection framework
as close as possible to the real ATLAS data process-
ing, a disagreement between the MC and real data can
have two possible causes:

• We have somehow misunderstood some of the
basic principles of physics.

• We do not understand our detector well enough.

While the second is the most likely, smaller correc-
tions of the first kind are also to be expected and can
provide valuable insights.

These discrepancies can be circumvented using dif-

3

ferent methods that will be discussed in section 3.3.

2.3 Classification Algorithms

In this section different types of classification will be
covered. To give an idea of the methods described
throughout the section, they are implemented in a
2D-space and their decision boundaries are visualized
in figure 3.

2.3.1 Simple Cuts

As a simple first step, looking at the Monte Carlo-
generated data with the signal highlighted and mak-
ing cuts by qualitative estimates, gets you surpris-
ingly far.
Most cuts made this way can be rooted in physical
intuition. Two examples are;

• The predicted mass of a K0
S is around 500 MeV.

Particles with masses far from this can be left
out.

• Theta is a measure for the angle between the
momenta of the decaying particle and its daugh-
ter particles. As conservation of momentum re-
quires this angle to be ≈ 0,cos θ should never
stray far from 1.

However, cutting solely ”by hand” might introduce
unwanted effects. We tried to optimize the cuts using
the minimization algorithm in SciPy6. This was done
by maximizing the signal significance:

Nsig√
Nsig + Nbkgr

Since the most desirable outcome is to retain most
of the signal while removing the background, we re-
quired that a minimum of 95% signal is kept.

The results from this algorithm is given by:

rxy < 442.281 mm

χ2 < 10.617

cos θ > 0.9875

459.048 MeV < mK0
s
< 546.543MeV

These are visualized in figure 2.

6https://docs.scipy.org/doc/scipy/reference/

generated/scipy.optimize.minimize.html

2.3.2 Fisher

A classic way to make a classification is using the Fisher
Discriminant7. The simple idea of the Fisher Discrim-
inant is to project points in high dimensional space
onto the line that maximizes the distance between the
classes compared to the distance within the classes.
The maximum separation occurs, with the line given
by the vector:

~ω ∝ (Σs + Σb)
−1 (~µs − ~µb) (1)

where Σ is the in-class co-variance matrix, and ~µx is
the vector consisting of the parameter means for class
x. The score is now computed by taking the dot-product
with the data points, and an appropriate decision line
can be chosen ([2]).

2.3.3 Decision Trees

Decision trees are a generalized way of making cuts
for prediction. They can be used for both regression
and classification but in this project the focus is on
the latter. A decision tree consists of numerous nodes
(called leaves), each of which divide the input data
into subsets which is fed into the next layer of nodes.
For classification, the goal is then for the final layer
to have nodes which only contain points of a single
class. The number of layers is called the ”depth” of
the tree. When training a decision tree for classifica-
tion, a measure of impurity for a given node is neces-
sary. Most commonly the Gini-impurity is used, de-
fined by:

IG(p) = ∑
i

pi (1− pi)

where the sum is over all possible classes, and pi is the
fraction of points of the class i in the node. An inter-
pretation of the Gini impurity is that if you assigned
each point randomly to class i with the probability pi

then the Gini impurity is the fraction of errors you are
going to make. Creating a new node usually consists
of choosing a cut, which minimizes a weighted sum
of the Gini impurities of the two daughter nodes. This
is the widely used ’greedy’ approach and it should be
noted that it does not guarantee the best optimization
as it does not account for possible better cuts resulting
in an apparent worse earlier cut.

In an effort to not overfit8, a tree can be pruned 9. In
7with assumptions like normally distributed data this can be

generalized to Linear Discriminant Analysis
8Overfitting is a term for when a predictor loses generalizabil-

ity by learning the specifics of the training data instead of general
trends

9No split is made if the gain is under a certain threshold

4

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

Figure 2: A visualisation the four simple cuts made in MC, using truth labels to distinguish signal and background.

the implementations used in this project this is done
using the parameter γ, whilst constructing the tree.
When enumerating the leafs, the ’gain’ is calculated
as10:

Gainidea = [SL + SR − SL+R]− γ

where SL and SR are the scores of the new left and
right leaves and SL+R is the score on the original. γ

is the important constant that controls the regulariza-
tion. If the gain is negative, the branch terminates,
otherwise it is split, and goes on until reaching a set
maximum depth [3].

2.3.4 Boosted Decision Trees

While the decision tree ideally separates classes com-
pletely, this is rarely a possibility while simultane-
ously retaining a finite depth and robustness. A bet-
ter result can often be obtained by producing a lot of
’small’ trees and combine them into a forest. This is
the procedure of boosting, which denotes the method
of combining a group of ’weak’ models into a single
good model. In the case of trees this is frequently de-
nominated a ”forest” 11.

10We leave out some prefactors in this formula
11This is also called an ensemble model

The forest is built additively a single tree at a time,
where each new tree focuses on complementing the
forest where the current predictions are weak. This
notion can be defined in at least two ways. The first is
adaptive boosting where the new tree trains on data
which is weighted by how bad they are predicted by
the current forest, i.e. a misclassified data point re-
ceives a higher weight. The other formulation is as an
optimization problem and is called gradient boosting:

If we denote the tree that is currently learning as ft(x)
and our prediction of i at time t as ŷ(t)i , the learning
process can be described as:

ŷ(0)i = 0

ŷ(t)i =
t

∑
k=1

fk(xi) = ŷ(t−1)
i + ft(xi)

The training of the individual tree consist of optimiz-
ing the objective-function:

obj(t) =
n

∑
i=1

l(yi, ŷ(t)i) +
t

∑
i=1

Ω(fi)

Here l(yi, ŷ(t)i) is the loss function to be minimized

and yi and ŷ(t)i is the target and current prediction at
time t respectively. Ω is the common notation for a
regularization term. The loss function is commonly

5

the Mean Squared Error for regression and negative
log-likelihood/cross entropy loss for classification. How-
ever, it can be advantageous to expand the loss func-
tion in a second order Taylor expansion (with first and
second order differentials gi and hi as coefficients), in
order to generalize the optimization for any loss func-
tion. In this case the objective becomes finding the
new tree ft which minimizes:

obj(t) =
n

∑
i=1

[
l(yi, ŷ(t−1)

i) + gi ft(xi) +
1
2

hi f 2
t (xi)

]
+ Ω(ft)

The creation of the tree ft follows a greedy approach
since it greatly reduces computational time and doesn’t
improve forest significantly. [3]

We will now dive deeper into the specific tree-boosting
algorithms we have used in this project:

XGBoost There are multiple ways of ’training’ the
trees. Training means optimizing the tree on the given
data and classes. One of the most reliable and efficient
algorithms is found in the XGBoost-library (eXtreme
Gradient Boosting). As the name suggests, XGBoost
implements gradient boosting to quickly produce a
large ensemble of weak models.[4]

LightGBM Another very popular algorithm is the
Microsoft-created Light Gradient Boosting Machine,
better known as LightGBM. The main difference be-
tween LightGBM and its competitors (XGBoost for
example), is the fact that LightGBM uses a technique
called Gradient-based One-Side Sampling (GOSS) for
finding the optimal cutting value while XGBoost uses
a histogram-based algorithm which is slower in most
cases.

After bundling both data and features using GOSS,
the algorithm runs as O(Ndatabundles · N f eaturebundles)

which trivially beats the O(Ndata · N f eatures) used in
other algorithms on larger data sets.[5]

AdaBoost Is an implementation of the adaptive boost-
ing formulation. Adaptive boosting works by switch-
ing between training on a section of points and classi-
fying a random sample of the others. Between each
iteration, the algorithm re-weights the input space,
giving larger importance when training on wrongly
classified points. This is consistently slower than the
two others, but has the potential to beat the other al-

gorithms on precision in the long run.12 All of the
methods discussed in this section somehow make a
decision boundary in the given parameter space with
differing levels of sophistication which is displayed
for comparison in figure 3.

Figure 3: Decision Boundaries in a 2 dimensional parame-
ter space, with mK0

s
on the y-axis and logit((cos θ + 1)/2) on

the x-axis, in Monte Carlo simulation. The decision bound-
aries display where in the feature space the given algorithm
would classify points as signal or background. The points
are a test sample to demonstrate the accuracy. The cut in the
Fisher Discriminant is found by minimizing the Gini impu-
rity. To see the decision boundaries for two correlated fea-
tures see figure 38

2.4 Investigative Algorithms

Classification tasks are rarely as simple as just apply-
ing one of the aforementioned algorithms. Much of
the work goes into preprocessing the data and opti-
mising the chosen algorithm. In this section, we in-
troduce methods used to find correlations, evaluate
model performance and quantify the importance of
any feature.

2.4.1 Shapley Additive Explanation (SHAP) Values

Normally, when we train a simple model (decision
tree, linear regression, etc.) the model explains the
result itself. In a linear regression, we can interpret

12the implementation used is found at: https://scikit-learn.
org/stable/modules/generated/sklearn.ensemble.

AdaBoostClassifier.html

6

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html

the results as a slope and intercept. In a single deci-
sion tree the cuts can be written explicitly. However,
when we have more complex models like neural net-
works or boosted decision trees, the results are harder
to interpret as the models are more complex. To en-
lighten us, an approach is to quantify the importance
of each input-parameter in the model. To do this we
are using the SHAP (SHapley Additive exPlanations)
algorithm. [6].

SHAP values are built on the game theoretical con-
cept of Shapley values. A Shapley value is a way to
determine the reward an actor in a game should re-
ceive according to their contribution. It is calculated
for each feature i by predicting a model f using the
feature space S without i and a feature space S ∪ {i}
which includes the feature i. The Shapley value is
now calculated by summing the contributions from
including i, weighted appropriately.

φi = ∑
S⊆F\{i}

|S|!(|F| − |S| − 1)!
|F|!

(
fS∪{i}(xS∪{i})− fS(xS)

)
Where the sum is over all subsets that does not in-
clude the parameter i. In the actual implementations
several assumptions are made.
Since the models described in section 2.3 cannot han-
dle randomly missing inputs, fs(xs) are approximated
as the expectation value where the features of S are
fixed: fs(xs) ≈ E[f (x)|xs]. Furthermore, the actual
value is found by sampling, as the possible number
of permutations of the group S ⊆ F\{i} quickly be-
comes large.

The resulting SHAP-values can be used to see how
the parameters affects the classification. The absolute
SHAP-value is an indicator of the importance of the
feature, and the sign can be used to analyse how the
features contribute to the classification. Higher val-
ues of cos θ gives high positive SHAP-values, as it is
a good indicator for signal, as an example.

Most models include some kind of feature importance
estimation, but SHAP-values are robust, generalizable
and easy to understand.

2.4.2 Correlations and Maximal Information Coef-
ficient

In this project, when doing feature selections, mini-
mizing correlation with mass is vital. A normal ap-
proach for quantifying correlation would be to use

the Pearson correlation coefficient defined by:

ρx,y =
cov(x, y)

σxσy

This method is computationally efficient and is good
at finding linear correlations. Thus it would have been
a suitable approach had we used a linear classifier
such as Linear Discriminant Analysis.

However, the primary method used for classifying is
boosted decision trees, which are far from linear mod-
els, and are therefore sensitive to other types of corre-
lations. To calculate more general correlations we use
the Maximal Information Coefficient (MIC) [7].

This correlation type builds on the measure of mutual
information, which is defined by:

I(X, Y) =
∫

dxdy p(x, y) log2
p(x, y)

p(x)p(y)
(2)

This compares the probability distribution over two
variables. A more illuminating form is to write out
the logarithm: log2 p(x, y)− log2 p(x)p(y) which can
be seen as the bitwise difference in the information
contained in the joint probability between x and y
compared to the assumption that x and y are inde-
pendent variables13. Computationally the mutual in-
formation I(X, Y) is estimated by binning the data.
Binning over X, Y bins gives:

I(X, Y) ≈∑
X

∑
Y

p(x, y) log2
p(x, y)

p(x)p(y)

However, this measure is quite sensitive to the choice
of binning. To make up for this we use the MIC-
algorithm. Which maximizes:

MIC(X, Y) = max
|X||Y|<B

I(X, Y)
min(|X|, |Y|)

The mutual information is thus maximized for differ-
ent binning schemes of X and Y that satisfy having
sizes less than some number B. The use of MIC to de-
termine correlation now gives us a general correlation
metric that could be used for very differently shaped
probability distributions. This is however computa-
tionally heavy, and we have to sacrifice the amount
of data used to determine the correlation (to a practi-
cal maximum of ≈ 5000 events).

13 p(x, y) = p(x)p(y) if and only if x and y are independent vari-
ables

7

2.4.3 Receiver Operating Characteristic (ROC)

For evaluating the perfomance of a model, a lot of dif-
ferent metrics are available. One of the simplest is the
Receiver Operating Characteristic (ROC), which is a
graph displaying the relationship between the true
and false positive rate of classification. Thus, given
the prediction scores of a model, the ROC-curve shows
the relationship between correctly classified signal and
background events for different thresholds in the pre-
diction scores.
The rate at which these are classified are denominated
as TPR (True Positive Rate) and FPR (False Positive
Rate). These can also be denominated as signal- or
background efficiency.
Given a dummy classifier assigning scores at random,
the ROC-curve would be along the diagonal, as the
rate of truthful classification would follow the ratio
of signal and background events in the data. With a
perfect model, the ROC-curve would go straight to
the corner, as there would be only background up to
a given score from the model, and the rest would be
signal. This form motivates the use of a metric for de-
termining the usefulness of a classifier by comparing
the integral of the ROC-curve, the AUC (Area Under
Curve), which would be 0.5 for a dummy classifier
and 1 for a perfect one.14

ROC-curve by fitting Usually the true/false posi-
tive rate is calculated by the use of truth-labels. How-
ever, whenever it is possible to estimate the true/false
positive rate, it is also possible to estimate the ROC
curve. In this data-set, using the mass histogram, we
are able to estimate the ratio of the amount of signal
to the maximal amount of and the ratio of the amount
background retained to the maximum amount of back-
ground given some classification. To do this, we lever-
age the fact that the signal can be fitted as a localized
peak on top of the background.

The procedure starts by finding the total amount of
signal and background in the test sample by fitting
the mass histogram. Thereafter, cuts in the prediction
scores are made and once again the mass histogram
is fitted to find out how much signal and background
is retained. The procedure can be summarized as the
following:

14If the AUC is below 0.5 it can be inverted to still give a pre-
dictive power over random, but this report does not include those
instances.

• Fit the entire test sample to find the maximum
amount of signal and background.

• Determine a threshold in the prediction scores,
leaving data points with scores beyond the thresh-
old as a subsample.

• Find the amount of signal and background left
in the subsample through fitting.

• Convert this to ratios between the maximum amount
of signal and background respectively, which gives
the TPR and FPR respectively.

• Move the threshold and repeat.

This procedure works best if the mass histogram does
not fluctuate much for different thresholds. For exam-
ple, the background should be removed ’uniformly’,
especially around the signal peak. For example, if,
at some threshold, the background just outside the
peak is removed but the background under the peak
is kept, one could erroneously achieve a signal ratio
larger than 1.

Another pitfall when using this method at low-signal
instances can the background and peak fit erroneously
make a small negative peak. This leads to small fluc-
tuations around x ≈ 0 when drawing the ROC-curve
based on fitting.

ROC-curve by cross-validation A more traditional
way of making a ROC-curve is making two models
where the probability scores are then used to cross
validate each other. The procedure then goes as;

• Train two models on two uncorrelated sets of
parameters, and retrieve probability scores from
each.

• Use the probability score from model 1 as a truth
label and evaluate the ROC-curve for model 2
(or vice versa).

This can be employed in a variety of ways, of which
two will be implemented in this project:

• Cross-validating two models trained on sepa-
rate uncorrelated parameters in data.

• Cross-validating a model trained on a fuller set
of parameters in data, with a model trained on
the same parameters in MC. These two are heav-
ily correlated, so the main takeaway from this
kind of validation would be to check if the two

8

models extract the same amount of information
from the data.

It should be noted that a given model should only
be cross-validated against a better model, since the
worse model will not be susceptible to false positives
in the pseudo-labels. However, this also means that
cross-validation ROC-curves can be a tool in telling
which of two models is the better predictor, ie. the
better model would pick up on the false positives pro-
vided by the worse model.

3 Analysis

In this section the initial analysis of the data will be
presented. First, the peaks for K-Short and Lambda
particles will be quantified. Then the features of MC
will be compared with the data. Afterwards the cor-
relation of features with the mass as well as with each
other will be determined. In the end of the section,
the importance of the features will be ranked and the
ROC-curve method suggested in section 2.4.3 will be
tested in MC.

3.1 Fit and Estimates

In this section we will discuss the peaks associated
with the particles.

3.1.1 K0
S (K-Short)

A good first approach for describing the K0
S is fitting

the mass peak. As the peak is made from events with
different mass uncertainties, a single normal distri-
bution is not a good fitting function. The preferred
fit in this project is a double-Gaussian with a single
mean µ. To minimize the correlation between fit pa-
rameters, the heights of the two Gaussians are con-
trolled by two parameters, a size N as well a fraction
f , where the size of the two Gaussians are f N and
(1 − f)N. The peak is found on a background, for
which a simple third degree polynomium is used. An
example of a background-fit and subsequent peak-fit
in both MC and data can be seen in figure 4.

A way of controlling the entire framework of track
reconstruction and mass calculation is to check if the
mass-error is consistent with the peaks found in the
data. This can be checked by picking a number of
bands in binned ’v0 ks massErr’ data, and for each

one try a single Gaussian fit in the K0
S-mass was per-

formed. The standard deviation on the fitted Gaus-
sians as a function of the given mass uncertainties can
be seen in figure 5. A linear fit between the found un-
certainties and the given values has a p-value of 0.219
giving us no reason to suspect any internal inconsis-
tencies. We did, however, find a finite y-intercept, and
seeing as the predicted connection between the two
should be a direct proportionality with no y-intercept,
there might be an error in our methods, either when
fitting or binning. But as a systematic error might be
to blame, we will try to keep this ≈ 0.765σ discrep-
ancy in mind.

3.1.2 Λ/Λ (Lambda/Lambda-bar)

The peaks in Λ/Λ are less pronounced than the peak
for the K0

S. The procedures and methods used in or-
der to isolate the peak were the same as for the K0

S.
Only the background fitting required additional tun-
ing, since the background shapes are different. The
initial fit results can be seen in figure 4.

3.2 Parameters and Correlation

A lot of work has been done to determine a viable set
of features to use for classification. As the complexity
in a machine learning model scales heavily with the
amount of features, there is a big performance gain
when low impact features can be thrown out. More-
over, when we are defining our pseudo-labels for a
machine learning model in data, we define it based
on mass. This means, that a model correlated with
mass will be able to determine whether an event has
the appropriate mass for the wrong reason.

3.2.1 Correlations with Mass

To determine the correlations with mass, we use the
MIC method described in section 2.4.2. The calcu-
lated MIC along with Pearson correlation for data and
simulation respectively for the most correlated fea-
tures can be found in table 2.

As we use pseudo-labels defined from the mass, the
correlated parameters makes it possible for a boosted
decision tree to determine the mass, and it will thus
classify based on this instead of other useful param-
eters from the peak. To illustrate this example the 10
parameters from the table 2 is used in a LightGBM
classifier with results displayed in figure 6. In this fig-

9

Figure 4: A typical mass-fit in untouched MC and data on both K-Shorts and Lambda. The background is fitted with a third
degree polynomial and a double Gaussian is used on the peak. The parameters µ, σ1 and σ2 are what you would expect. f is
the fraction of the scale each of the two Gaussians gets (see section 3.1).

Table 2: Table displaying correlation with mass both using
the MIC method as well as the linear correlation using the
Pearson coefficient

Feature MIC (Data) ρ (Data) MIC (MC) ρ (MC)
pT 0.47 0.68 0.47 0.67
v0 ks massErr 0.38 0.49 0.34 0.57
alpha/Alpha 0.28 -0.02 0.26 -0.07
calpha 0.22 -0.38 0.21 -0.38
v0 rxyErr 0.17 -0.20 0.18 0.19
cosTheta 0.15 -0.03 0.18 -0.05
pL1 0.13 0.13 0.12 0.05
v0 rxy 0.13 -0.14 0.12 -0.10
v0 thetastar 0.13 0.01 0.13 0.08

ure, the peak is significant, and is much greater that
the one seen before a classification. The background
is clearly not a consistent form, so the model classified
based on mass.

Some of the parameters are very strong for classifi-
cation like cos θ and rxy. Evaluating their MIC with
mass, we get MIC ≈ 0.15 for both, which in the MinePy
documentation15 is resembling something between a
random Gaussian (MIC of 0.1) and a slightly skewed
one (0.2). Along with a small Pearson correlation, this
gives no reason to exclude the variables. We note that
one should be careful if a classification even vaguely

15see https://minepy.readthedocs.io/en/latest/index.

html

resembles the one shown in figure 6.

After having refined the methods on the K0
S, we ran

the same analysis on Λ and Λ̄. The correlations were
generally stronger in these cases. While some of the
features correlate with both K0

S-mass and the Λ-mass,
especially thetastar, v0 p2, v0 qOverP2 and PL2 stands
out as more correlated with the mass of the Λ. The ex-
act correlations can be seen in table 8 in the appendix.

3.2.2 Correlations between Features

To investigate and reduce the number of variables,
variables were grouped based on the correlations cal-
culated by the MIC-score. Using a data set of 1000
events16 and taking the first 57 features (those are the
mostly continuous features that we chose to include)
we now computed the pairwise MIC score and saved
them in a correlation matrix.

To group the parameters, the matrix should be set on
a block diagonal form. This is done using hierarchi-
cal clustering which takes a distance matrix and iter-
atively merges points given a criteria (here minimiz-
ing the variance of a given group). For this clustering

16Ideally this would be a much larger number. But as we com-
pare≈ 50 parameters pairwise with the computationally expensive
MIC algorithm, this is our chosen limit

10

https://minepy.readthedocs.io/en/latest/index.html
https://minepy.readthedocs.io/en/latest/index.html

Figure 5: The correlation between the calculated uncertainty in data and the uncertainty found through fitting a Gaussian to
the same data. The results has been fitted with a line. The fit for each point can be seen in figure 40 in the Appendix.

400 450 500 550 600
k-short-mass [MeV]

0

200

400

600

800

1000

1200

Fr
eq

un
cy

Total frequency

400 450 500 550 600
k-short-mass [MeV]

Classified signal

400 450 500 550 600
k-short-mass [MeV]

Classified background

Figure 6: What not to do! Test sample in data with mass between 400-600 MeV. The data is seperated using a LightGBM
trained with correlated features displayed in the Table 2. It is very clear that LightGBM misclassifies much of the background
purely based on the particle mass.

the distance was defined as ||x − y|| = 1 −MICxy.
Keeping track of the merging order, the optimal or-
dering can be found, which is then used as the op-
timal ordering of the matrix. Using the hierarchical
clustering implementation in SciPy17, the clustering
gives the correlation matrix shown in figure 7.

This figure shows a clear grouping of the features into
separate groups consisting of physically similar prop-
erties. The groups can be interpreted as (going from
upper left to lower right along the diagonal:

• Primary vertex positions

17Implementation found at https://docs.scipy.org/doc/

scipy/reference/cluster.hierarchy.html

• Calculated features of the V0-vertex position along
with the angles and curvature of the two daugh-
ter particles paths

• Momenta for the two daughter particles

• A group of flight length features and cos θ

• χ2 in a group with itself

When combining the information from figure 7 with
the correlation with the mass, it becomes apparent
that the second group (epsilon1-pT) contains multiple
parameters correlated with the mass (pT, alpha, pL1,
etc.). Since these parameters are evenly spread across
this group it would be very difficult to use param-
eters from this group without correlating the model

11

https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html
https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html

pv
0_

y

pv
0_

x

nt
rk

_p
v0

pv
0_

z

v0
_z

ep
sil

on
1

v0
_p

2

v0
_q

Ov
er

P2

pL
2

v0
_p

ca
lp

ha

v0
_p

z2

v0
_p

z

ps
eu

do
ra

pi
di

ty

v0
_p

z1

v0
_t

he
ta

1

v0
_t

he
ta

2

ep
sil

on
2

v0
_p

tE
rr

v0
_q

Ov
er

P1

pL
1

v0
_p

1

v0
_p

t1

al
ph

a

Al
ph

a

th
et

as
ta

r

pT v0
_p

y1

v0
_p

hi
1

v0
_p

x1

v0
_p

x

v0
_p

x2

v0
_p

hi
2

v0
_p

t

v0
_p

y

v0
_p

y2

v0
_p

t2

v0
_x

v0
_r

xy

v0
_y

v0
_r

xy
Er

r

a0 a0
z

a0
xy

co
sT

he
ta

v0
_c

hi
2

v0
_k

s_
m

as
s

DATA-CORRELATIONS

pv0_y

pv0_x

ntrk_pv0

pv0_z

v0_z

epsilon1

v0_p2

v0_qOverP2

pL2

v0_p

calpha

v0_pz2

v0_pz

pseudorapidity

v0_pz1

v0_theta1

v0_theta2

epsilon2

v0_ptErr

v0_qOverP1

pL1

v0_p1

v0_pt1

alpha

Alpha

thetastar

pT

v0_py1

v0_phi1

v0_px1

v0_px

v0_px2

v0_phi2

v0_pt

v0_py

v0_py2

v0_pt2

v0_x

v0_rxy

v0_y

v0_rxyErr

a0

a0z

a0xy

cosTheta

v0_chi2

v0_ks_Mass

M
C-

CO
RR

EL
AT

IO
NS

0.0

0.2

0.4

0.6

0.8

1.0

M
IC-score

Figure 7: The correlation matrix found by calculating the Maximal Information Coefficient between the features of the data
set. The upper right triangle is displaying correlations in data, and the lower left triangle is correlations in the Monte Carlo
simulation. All correlations are calculated using a 1000 point sample. The order of the features are found by doing a hier-
archical clustering to find the optimal ordering, and the white lines are separating the groups of features using maxclust = 5
argument. The mass was excluded from the clustering but is added in the end to display correlations.

12

with the mass. As the main goal is to obtain a smaller
sample of features where at least two groups are un-
correlated, it would make sense to exclude the entire
second group. This motivates defining two sets of
variables uncorrelated with mass defined by:

ML1 features: v0 chi2, v0 px1, v0 phi1, v0 py1, v0 py,
v0 py2, v0 phi2, v0 px2, v0 px
ML2 features: cosTheta, a0xy, a0, v0 y, v0 x, v0 rxy
v0 rxyErr, v0 z, pv0 z, pv0 y, ntrk pv0, pv0 x

We also define a third group, ML1+2 as the junction
of the two.

3.2.3 Feature Importance

In this section, the importance of the features in classi-
fying K-Short particle will be quantified. This is done
using the features kept from ML1 and ML2 defined
in the above section and calculating the SHAP value.
Furthermore, the XGBoost implementation also has a
way of ranking feature importance using a gain crite-
rion. This value is calculated by seeing the improve-
ment of the splits when they include a certain param-
eter in a split, and is thus an indicator for the most
important values in training the model18. The results
from calculating the SHAP-values and Feature Im-
portance Scores (with the gain-criterion) can be found
in table 3.

Table 3: Calculated absolute SHAP values from an XGBoost
model trained on data. The SHAP values are calculated
from 104 points, and the feature importance is calculated
by XGBoost according to the gain.

Feature SHAP-val Feature-importance
a0 22.7 9.9
cosThetas 19.6 56.3
v0 py1 19.1 3.0
v0 px2 18.1 3.1
v0 py2 16.6 3.2
v0 rxyErr 16.5 3.8
v0 px1 16.2 3.3
v0 z 14.4 1.1
v0 rxy 9.2 3.7

Clearly, cos θ is by far the most important parameter
for training this model, but not necessarily the most
important according to the calculated SHAP-values.
Luckily, the SHAP-values are calculated for each point,
so it is possible to investigate different SHAP-values

18found here: https://xgboost.readthedocs.io/en/latest/

R-package/discoverYourData.html?highlight=feature%

20importance

more closely. Making a summary plot of the SHAP-
values calculated in order to rank them in table 3 the
plot in figure 8 is obtained. This figure gives a more
nuanced picture of the impact of variables. Here, high
values cos θ is associated with a more probable sig-
nal. For this reason a single split in a decision tree
reduces the impurity in the sample significantly and
will be a natural choice of a greedy algorithm result-
ing in higher ”feature importance” of cos θ. The flight
length variables a0, rxy requires multiple cuts to be
able to determine signal placing them further down
in the decision trees. The gain in purity is drastically
decreased by these cuts but it is still vital to the final
classification.

Figure 8: Summary plot of the SHAP values for one group
of variables in data. A higher SHAP value implies that the
feature increases the chance that the point is classified as
signal. The higher the value, the bigger impact.

3.3 Comparison of Data and Monte Carlo

In the following section, if nothing else is given, we
reference the K0

S fitting.

The main difference between real data and Monte Carlo
(MC) simulated data is that MC has a clear truth label.
This means supervised learning methods can easily
be trained on MC and applied on real data. How-
ever, this approach assumes that the feature spaces
of data and MC are indistinguishable, which is rarely
the case. First principles simulations are fantastic, but
many hidden effects in the detector setup (or wrong
simulation principles) make any variable distribution
differ substantially between MC and real data. Often
there are effects available in the distributions which
makes them distinguishable. Some of the effects are:

• Different value ranges. Either the ranges do not
overlap, or one of the ranges are smaller, which

13

https://xgboost.readthedocs.io/en/latest/R-package/discoverYourData.html?highlight=feature%20importance
https://xgboost.readthedocs.io/en/latest/R-package/discoverYourData.html?highlight=feature%20importance
https://xgboost.readthedocs.io/en/latest/R-package/discoverYourData.html?highlight=feature%20importance

means points outside this range are sure to be-
long to the other group.

• Dissimilar distribution shapes. Thus, in the higher
dimensional feature space, it is possible to dis-
tinguish points belonging to either data or MC.

One can try to scale and move the distributions such
that they overlap as much as possible, but this is a
highly non-trivial task, which will be discussed in sub-
section 3.3.1.

One clear way to quantify how indistinguishable the
feature space of data and MC are, is to train a model
to predict whether a point is from a data sample or a
MC sample. The AUC of this predictor should then
be ≈ 0.5, if MC is indistinguishable from data.
Another way, which is more investigative, is to com-
pare the distribution of data and MC in each feature.
However, since we ultimately want to train a predic-
tor on these distributions we need to compare the un-
derlying labeled distributions, i.e. compare signal in
data to signal in MC and likewise for the background.

Extracting the signal distributions from MC is trivial
due to the given truth labels. We can train a model
to estimate the truth labels in data, or we can esti-
mate the signal distributions from the data alone. The
procedure of the latter is shown in figure 9. By the
use of the peak in mass we select a subset of points
which we know to contain signal and background,
and through fitting we estimate what the signal to
background ratio is. Then we randomly select enough
points from the side bands to subtract all the back-
ground from the signal/background distribution as
shown to the right in figure 9. This procedure works
best if the feature is uncorrelated with mass or if the
sum of the distributions from the side bands compare
well to the background distribution from the signal
and background band. In figure 33 in the Appendix
we compare the estimated signal distribution against
the true signal distribution by applying the procedure
in MC.

In the appendix figure 27, we show a gross overview
of the comparison between MC and data distributions
for 20 different features. We see cases where the range
of values are not overlapping, such as pv0 y and pv0 x,
or cases where the limits of the ranges are different,
such as v0 py/px where MC extends further out than
data and v0 y/x where data extends further out than
MC. However, from the fractional comparison we see
that within the overlapping regions, they are gener-
ally comparable, and a solution for the general case is

to shift and scale the distributions.

If the distributions are experiencing dissimilar shapes
a solution can be to reweight the simulated data.

3.3.1 Reweighting

The idea of reweighting a distribution to match a tar-
get distribution is very valuable when comparing a
simulated distribution to a distribution with real data.
The idea assumes that two distributions span the same
values in feature space, but have different densities,
leading to a mismatch between the two. This affects
training a model on one distribution and applying
it on another, since, in practice, the training of most
models are based on statistical learning, which is sus-
ceptible to feature space density differences.

Thus, ideally there is a high-dimensional analytical
mapping that makes the original distribution similar
to the target distribution by assigning weights to each
data point.

The reader should note that reweighting cannot ac-
count for a difference in value ranges but only for the
distribution density in a given feature space.

One simple way this can make a difference is when
one is trying to distinguish between two classes A
and B, but in the simulated data one of the classes
is over-represented compared to the test data. Here
one could use ”zeroth-order” reweighting and sim-
ply reweight the amount of class A and the amount
of class B to match between the distributions.

We will attempt to perform this task without any fit-
ting or classification of the data. We do this by using a
gradient boosted decision tree to approximate the as-
sumed high-dimensional mapping mentioned above.

There are many possible problems with this, most promi-
nently, the curse of dimensionality and discontinuous
distributions.

The first problem, high dimensionality, is an issue due
to distances in high-dimensional space. This means
that a point, although not an extreme outlier in any
one distribution, can suddenly appear to be so ex-
treme that its weight is adjusted in a likewise extreme
way. However, this pitfall can be avoided by e.g. com-
paring SHAP values (see sec 2.4.1), in order to remove
variables with little impact, lowering the fitting di-
mensionality and lowering the probability of ”mis-
weighting”.

Secondly, the discontinuous distributions violate the

14

300 400 500 600 700 800 900
K0

s mass [MeV]

0

10000

20000

30000

40000

50000

60000

N Data

The bands in v0_ks_mass from which the distributions are drawn
Total mass distribution
Signal and background
Sidebands
Background
(includes sidebands)

4 3 2 1 0 1 2 3 4
pseudorapidity

0

1000

2000

3000

4000

5000

N

Data signal distribution estimation for pseudorapidity in data
Estimated signal distribution
low mass sideband
high mass sideband
Signal background distribution
Sidebands distribution

Figure 9: To the left, the definitions of the sidebands and the signal/background-band are shown for 5881544 V0 candidates.
The signal to noise ratio in the s/b-band is estimated through fitting, such that the s/b-band is found to contain ∼236e3
background points and ∼91e3 signal points. Half the number of background points are randomly selected from each side
band in order to draw the distributions shown to the right, where all the points from the s/b-band are shown as the blue
distribution. Here the distributions are drawn for the feature pseudorapidity, and as can be seen, the signal distribution is
very different from the background distribution, which has larger contributions at high |η|, where the detector has lower
performance.

essential assumption behind reweighting, unless the
original and target distributions are discontinuous in
exactly the same way. This can be mitigated by trans-
forming the data before reweighting, but in some cases,
finding a useful transformation is highly non-trivial.

We attempt to do this transformation for a general
dataset by making a scaler that is robust against out-
liers, placing most (70%-90%) of a distribution in the
interval [0,1]. This accounts for the discrepancies in
distribution ranges, and often for outliers. However,
we have learned that when the number of datapoints
eclipses 1 million19, the reweighting generally fails
for sets of variables that includes any variable with
a discontinuous distribution, i.e. data and MC re-
main distinguishable or the weights diverge. Addi-
tional to using a classifier to check the distinguishabil-
ity between MC and data, we perform Kolmogorov-
Smirnov 2-sample tests across the distributions.

In both cases, doing manual scaling before doing the
reweighting is more effective, since it eliminates any
obvious cuts that can be used to distinguish between
the two.

19Note that it is the implementation that fails numerically, there
is nothing that inherently should make this worse when raising the
amount of data points

The importance of this can be seen especially in the
differences in the discontinuous variables, ’pv0 x’, ’pv0 y’,
pv0 z’ and ’ntrk pv0’ as in figures 41a and 41b.

After the scaling and reweighting the average KS-value
(defined as the sum of KS two sample tests divided by
the number of tests), became ≈ 8 times lower.

The reader should note that in some instances, the
discontinuous variables can be left out of the reweight-
ing, and still enjoy a successful reweighting, applying
weights trained on the remaining variables.

It is also important to reweight the distributions with
respect to the target variable, which in this case was
the mass, since any reweighting should not make the
target distribution significantly worse. In our code,
this was implemented as requiring the KS two sample
test value of the mass distribution to improve when
reweighting.

3.4 Training in Monte Carlo/Data and Clas-
sifying Real Data

The goal of this section is to describe how to obtain
a model which successfully can predict the particle
type of a given real observation.

15

Training a classifier in MC is straightforward since
truth labels are provided. However, it is not certain
a model trained on MC generalizes very well to real
data.

At least two approaches can be made to obtain a more
accurate model, both of which have been described
above.

1. Scale the input features. This first step improves
the application of the MC trained model in data, if
there is a discrepancy between the feature spaces.

2. Adjust the distributions in MC to become more
like the distributions in data, i.e. reweighting. As ex-
plained in section 3.3.1 reweighting means adjusting
the density of points in feature space.

Training in data is not always a viable option. The
reason it is possible for this dataset is the same rea-
son given in section 2.4.3. However, our truth labels
are no longer exact, so we define so called pseudo-
labels which are estimated truth labels that contain
false positives. The pseudo-labels for training data
are defined very analogous to figure 9 where points
under the peak in mass are labelled as signal and points
in the side bands are labelled as background. This
means the truth labels are very noisy, but we have
found XGBoost to be robust against noisy labels (see
section 3.5).

One can also define pseudo-labels by training a model
in MC and predict pseudo-labels in data for a data
trained model. This method shows little improve-
ment in evaluating the K-Short peak, but would sup-
posedly be adept for a model where no clear pseudo-
label can be assigned in data for any parameter, given
that the feature space of the data can be made suffi-
ciently similar to the simulated feature space, as dis-
cussed above.

3.5 Model Evaluation

In this section, it will be verified whether the sug-
gested ROC-curve methods of section 2.4.3 are actu-
ally valid. To test this we will use the previous find-
ings from the correlation with mass from section 3.2.1

The two sets of features defined as ML1 and ML2 are
now used to train two boosted decision trees (here
the XGBoost implementation) on the pseudo-labels
generated from the mass with the method described
in section 3.4. As Monte Carlo is used, the truth la-
bels are available, and it is now possible to draw the

ROC-curve with both the use of the method described
in section 2.4.3 and with the help of the actual label.
The method along with true ROC-curve are shown
for the ML1 and ML2 model in figure 10. It is seen
that in both models the method developed for find-
ing ROC-curves are in agreement with the truth la-
bel. The same can be said about the AUC-scores that
in these examples are off by ≈ 0.01.

16

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
ML1
estimate: 0.882
truth: 0.857

ML2
estimate: 0.968
truth: 0.976

ROC-Curve Estimate by Fit

True ML1 ROC
True ML2 ROC

400 450 500 550 600
Ks mass [MeV]

0

500

1000

1500

2000

2500

3000

fre
q

Histogram for each calculated point in ML1
10 8 6 4 2 0 2

logit(probability)

100

101

102

103

104

fre
q

Distribution of Scores ML1
ROC-Curve Estimation by Fits in MC Compared to truth

Figure 10: Comparison of ROC-curves on ML1 and ML2 trained on pseudo-labels in Monte Carlo. The ROC curves are made
by applying cuts in the probability score (upper right figure and fitting the resulting histogram distribution of mass (the plots
in lower right figure). The ROC-curves for ML1 and ML2 are drawn in left figure along with the ROC-curves generated from
the truth-label which is accessible in MC.

4 Results

In this section the main results from the project will
be presented along with key figures. The results will
first be described with the K0

S-particle where robust-
ness and effectiveness of the algorithms are checked
against a significant peak. Afterward, the generaliz-
ability of the methods will be tested against another
less apparent peak. Here the significantly smaller and
more difficult peak of the Lambda-particle is used.

4.1 K-Short (K0
S)

In this section we will present the results of the al-
gorithms when we apply them on the K-Short parti-
cle. Firstly, the K-Short peak is fitted, as described in
section 3.1 by a double Gaussian with a fixed mean
value. For a sample size of 1.2 · 107, the mean was
found to be for the peak at µ = (498.2 ± 0.03)MeV
and a double Gaussian fit with variances described in
table 4. We will in this section be using the two sets of
features ML1, ML2, from section 3.5.

K-Short Lambda Lambda-bar
µ [MeV] 498.2±0.03 1116.1±0.08 1116.0±0.09
σ1 [MeV] 5.07±0.41 1.85±0.13 1.31±0.3
σ2 [MeV] 9.18±0.8 4.69±0.3 3.31±0.19
f 0.456±0.1 0.407±0.06 0.139±0.07

Table 4: The found values for the three particles on undis-
turbed data. f is the fractional height of the two Gaussians.

In figure 1120 we preliminarily show the results of
training XGBoost models with ML1 and ML2 features,
on their respective halves of 4.05 · 105 real data events
with pseudolabels.

4.1.1 Classical Classification Models

However, before diving deep into the world of ma-
chine learning with the entire arsenal of boosted de-
cision trees it can be beneficial to have some base-
lines for comparison. In this section, simple ROC-
curves from simple cuts, a Fisher discriminant and a
decision tree are found for this purpose. These tests
will be done in the simulated data (Monte Carlo) so
the actual truth-label can be used to accurately draw
ROC-curves. The comparisons will be made using
ML1 + ML2 for decisions trees and Fisher while only
using the cuts described in section 2.3.1 when cut-
ting. The ROC-curves are calculated using a sam-
ple of 106 events split in 80-20 train-test sample. The
ROC-curve along with calculated AUC-score can be
seen in figure 12. .

4.1.2 Reweighting

In this project we used the gradient boosted decision
tree reweighter available from the hep ml Python li-
brary [8].

With the right parameters reweighting can provide
robust improvements, and render the predictive scores

20Here the attribute ’sigma-mp’ denotes the proportionality be-
tween σ2 and σ1: sigma-mp = σ2

σ1

17

400 425 450 475 500 525 550 575 600
K0

s mass [MeV]

0

500

1000

1500

2000

2500

3000

3500
N

Classification of K0
s using ML1/ML2 in Data

all test data
ML1 threshold distribution
ML2 threshold distribution

0.00 0.05 0.10 0.15 0.20 0.25 0.30
FPR

0.6

0.7

0.8

0.9

1.0

TP
R

ML2 AUC: 0.9930
ML1 AUC: 0.9609
threshold: pML2 0.5576
threshold: pML1 0.3954

mean 498.2 +/- 0.1
sigma 5.74 +/- 0.10
sigma-mp 1.70 +/- 0.08
f 0.61 +/- 0.03
signal 23047 +/- 280
background 456463 +/- 280
s/b 0.050 +/- 0.001

mean 497.9 +/- 0.1
sigma 6.13 +/- 0.13
sigma-mp 3.47 +/- 0.12
f 0.49 +/- 0.01
signal 31876 +/- 764
background 48043 +/- 764
s/b 0.663 +/- 0.019

mean 498.1 +/- 0.1
sigma 6.10 +/- 0.12
sigma-mp 2.47 +/- 0.07
f 0.69 +/- 0.02
signal 24986 +/- 189
background 6982 +/- 189
s/b 3.579 +/- 0.101

Figure 11: In the main figure, 3 mass distributions along with tables of the fitted values are shown. The red distribution is
the collection of all the test data. The green and the blue distributions are subsamples defined by the thresholds shown in the
upper right figure. The upper right figure also shows the estimated ROC curves for ML1 and ML2, along with their AUC.
Both ML1 and ML2 were trained on different halves of 4.05 · 105 real data events. Description of the attribute ’sigma-mp’ can
be found in footnote 20.

Figure 12: The ROC curves of simple models in MC. One
done with the cuts described in 2.3.1, one with a decision
tree with a max depth of 10 and one with the Fisher dis-
criminant method.

from a model trained in MC more robust. This was es-
pecially relevant when applying this to the ML1 set.
Here the distributions span the same value ranges and
are continuous and thus provide a good basis for a
successful reweighting as discussed in section 3.3.1
(see figure 13).

It can also be seen that an XGBoost classifier finds it
significantly harder to distinguish between the data/MC
ML1 distributions after the reweighting as can be seen
in figure 14. The ability for a classifier to predict whether
or not an event originates from MC, depending on the
variable set and prepocessing method, is summarized
in table 5.

Reweighting is not as much of an improvement when
applying it to the other variable sets, but it still makes
it significantly more difficult for a predictor to tell the
difference between real data and MC, as evaluated in
table 5

4.1.3 Boosted Decision Trees

We will now apply the gradient boosted forest algo-
rithm, XGBoost. As described in section 3.4 we have

18

400 425 450 475 500 525 550 575 600
v0_ks_mass

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014
N

KS w/o reweight 0.152
KS with reweight 0.011

0 2 4 6 8 10 12 14
v0_chi2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N

KS w/o reweight 0.081
KS with reweight 0.006

8 6 4 2 0 2 4 6 8
v0_px2

0.0

0.2

0.4

0.6

0.8

1.0

N

KS w/o reweight 0.092
KS with reweight 0.013

0.25 0.00 0.25 0.50 0.75 1.00 1.25
v0_phi1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
N

KS w/o reweight 0.014
KS with reweight 0.009

Original MC
Reweighted MC
Data

Figure 13: Scaled and reweighted representative distribu-
tions for ML1. The reweighting here is very successful and
the weighted MC distribtutions are almost identical to the
data distribution. The full ML1 sample is available in ap-
pendix figure 42

Table 5: First column is the raw distribution. Scaling and
reweighting has different effects on our ability to distin-
guish between data and MC depending on the variable set.
The last column is scaled and reweighted data

Variable set AUCraw AUC (scaled) AUC (+reweight)
ML1 0.91 0.71 0.58
ML2 1 0.89 0.771
ML1+2 1 0.91 0.774

two approaches for training the classifier while still
maintaining its applicability to real data. In order
to test the classifiers applicability to data we draw
ROC-curves based on the method introduced in sec-
tion 2.4.3.

The first training procedure is to train using MC, and
involves training on scaled and reweighted simulated
data. Reweighting is introduced in section 3.3.1 and
evaluated in 4.1.2. The estimated ROC curves for mod-
els trained like this and tested in data can be seen for
ML1, ML2 and ML1+2 respectively in figure 15.

One curious finding was that when applying the MC
trained model to data, a higher AUC was achieved
when preprocessing the test data with the MC feature
space transformer instead of the more obvious data
transformer. This can only be the case if the impor-
tant features already lie within the same interval for
MC and data, and thus using the same transformer as

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Reweighting impacts the ability to distinguish between MC and data

Reweighted and scaled ML1 features, AUC: 0.5764
Scaled ML1 features, AUC: 0.7105

Figure 14: An XGBoost classifier tries to predict the differ-
ence between data and MC that is just scaled to match each
other, and data and MC that are both scaled and reweighted

Table 6: Scaling and reweighting has little to no effect on
the predictive power, except when evaluating the ML1 set.
The tests were run on a batch of 106 points

Variable set (AUC fit) AUC (raw) AUC (scaled) AUC (+reweight)
ML1 0.889 0.905 0.912
ML2 0.975 0.982 0.982
ML1+2 0.979 0.993 0.994
AUC (cross ML1/ML2) AUC (raw) AUC (scaled) AUC (+reweight)
ML1 0.90 0.93 0.95
ML2 0.91 0.92 0.92

used in training outweighs the minor discrepancies
between the training and testing feature spaces.

The second training procedure is to train in data, and
involves creating pseudo-labels from the v0 ks mass
feature. The estimated ROC curves in data can be
seen for ML1, ML2 and ML1+2 in figure 16 for this
training procedure.

We want to highlight that reweighting actually does
improve ML1 slightly, and quite robustly across the
different evaluation methods laid out in section 3.5.
The general changes in predictive power from scaling
MC to match data and reweighting can be found in
table 6.

4.2 Lambda (Λ) and Lambda-bar (Λ̄)

Comparing the basic fit of the K-Short with the Lambda
particle, clearly reveals that the peak of the Lambda
is significantly smaller compared to the background.
This gives a good playground for testing the algo-
rithms developed on the K-Short to see if it general-
izes when applied to a less significant signal.

Firstly we showcase the results for the method of train-
ing on scaled and reweighted MC. The estimated ROC

19

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Trained in MC, tested in data
ML1+ML2 AUC: 0.9811
ML2 AUC: 0.9828
ML1 AUC: 0.9083

400 450 500 550 600
K0

s mass

500

1000

1500

2000

N

Figure 15: ROC curves for ML1, ML2 and ML1+2 es-
timated through fitting of the v0 ks mass feature as de-
scribed in section 2.4.3. The models were trained in scaled
and reweighted MC and applied in data. The mass distri-
bution for three different thresholds (marked with crosses)
for the probabilities provided by ML1 are shown in the in-
serted figure.

curves in data can be seen in figures 17 and 18

The tricky part here was to have our ROC curve esti-
mation method generalize. We found that we needed
to limit the fitted signal mean closely to the expected
value for the lambda particle, because otherwise, the
fit function would try and fit other apparently insignif-
icant peaks, and draw an erroneous ROC curve.

The results for the method of training in data can be
seen in figure 19 and 20 where we draw the ROC
curves estimated in data.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Estimated ROC curve, AUC ~0.9513

1090 1100 1110 1120 1130 1140
k-short mass

0

250

500

750

1000

1250

1500

1750

2000

N

Distributions in mass

4 2 0 2 4 6
logit(probability)

0

2000

4000

6000

8000

10000

N

Logit transformed probabilities

Figure 20: ROC curve estimation from mass of ML2 trained
in data for the lambda particle.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Trained in data, tested in data
ML1+ML2 AUC: 0.9970
ML2 AUC: 0.9930
ML1 AUC: 0.9609

400 450 500 550 600
K0

s mass

0

500

1000

1500

N

Figure 16: ROC curves for ML1, ML2 and ML1+2 estimated
through fitting of the v0 ks mass feature as described in
section 2.4.3. The models were trained in data and applied
in data. The mass distribution for three different thresh-
olds (marked with crosses) for the probabilities provided
by ML1 are shown in the inserted figure.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Estimated ROC curve, AUC ~0.9170

1090 1100 1110 1120 1130 1140
k-short mass

0

500

1000

1500

2000

2500

N

Distributions in mass

2 0 2 4 6 8 10
logit(probability)

0

1000

2000

3000

4000

N

Logit transformed probabilities

Figure 17: ROC curve estimation from mass of ML1 trained
in scaled and reweighted MC for the lambda particle.

4.2.1 Model Performance on the Lambda

After training an XGBoost-classifier on the least cor-
relating parameters in the simulated data, we got the
ROC-curve and AUC score seen in figure 39 using
truth-labels. To obtain a smooth probability distribu-
tion (see figure 18) it was necessary to exclude cos-
Theta, pv0 x/y/z and ntrk pv0 from the reweighting
procedure (see section 3.3.1 for more insight into this).

In addition, it became clear that the Lambda-particles
relates to some parameters that the K-Short does not.
The full feature-importance tables can be seen in the
appendix in figure 30.

20

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Estimated ROC curve, AUC ~0.9615

1090 1100 1110 1120 1130 1140
k-short mass

0

500

1000

1500

2000

2500

N

Distributions in mass

4 2 0 2 4 6 8 10 12
logit(probability)

0

1000

2000

3000

4000

5000

N

Logit transformed probabilities

Figure 18: ROC curve estimation from mass of ML2 trained
in scaled and reweighted MC for the lambda particle.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Estimated ROC curve, AUC ~0.9620

1090 1100 1110 1120 1130 1140
k-short mass

0

250

500

750

1000

1250

1500

1750

2000

N

Distributions in mass

4 2 0 2 4 6
logit(probability)

0

1000

2000

3000

4000

5000

N

Logit transformed probabilities

Figure 19: ROC curve estimation from mass of ML1 trained
in data for the lambda particle.

4.3 Cross-validating Models

To evaluate models in data we need to build up tools
that are robust and verifiable. In this section we will
evaluate how the model predictions can be used to-
gether and their respective correlations.

4.3.1 ROC - validation

Employing the methods described in section 2.4.3, we
get the following (see figure 21):

1. ML1/ML2 cross-validation where one model is
used to check the performance of the other. Both are
trained and used in data.

2. Training a model in MC on ML1+2, we can use it
to validate the predictions of a model trained in data
on ML1+2 variables. This mainly validates whether
or not our models agree, more than their predictive
power, but in conjunction with other validation meth-
ods, this still gives valuable insight in both our ability
to use MC-trained models in data, and whether or not
we extract most of the extractable information in the
variable set.

Even though boosted decision trees show resilience
towards erroneous labeling when the mis-labeling only

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC-curve crosschecks

Validation of ML2 using ML1: AUC= 0.8859
Validation of ML1 using ML2: AUC= 0.9428
Validation of Data Classifier using MC-trained ML1+ML2: AUC= 0.9976

Figure 21: ROC-curves for cross-validating model perfor-
mance. As described in section 2.4.3, the worse classifier
usually ends up giving a worse ROC-curve, even if the
model it is validating is better. The ROC-curve for cross-
validating model performance between MC and Data, us-
ing MC as validation shows that the classifiers agree almost
completely, giving good confidence in our model’s ability to
extract most of the relevant information from the real data.

occurs within one of the two categories21, it could
possibly still be advantageous to reduce the ratio of
mis-labeling. To do this, two set of parameters with
minimal inter-pairwise correlation is selected. Then
a model with the first set of parameters is trained on
pseudo-labels and cuts are made in the prediction scores
of new data to select data points which it is fairly con-
fident is signal and likewise background. The sec-
ond model, with the second set of parameters, is then
tested on a third dataset after being trained on the sec-
ond dataset with labels generated by the first model.
The signal mis-labelling ratio went from < 1 (∼ 0.58)
to � 1 (∼ 4.28), but whether the second model was
trained on the first ratio or the second ratio had no
impact, the accuracy remained the same.

Note that we cannot exclude that this would still be
impactful in situations where the signal mislabelling
ratio becomes arbitrarily large, but from our analysis
it seems that it does not have a great impact when the
other class is correctly labelled.

4.3.2 Correlations between model predictions

Yet another way of investigating the models and their
interactions is to investigate the correlations between
what points the different models predict as background
and signal, and with what confidence. Ideally, since

21With the procedure used for generating pseudo-labels, the sig-
nal category is the one that contains a lot of background as well.

21

for the K0
S-particles, the ML1 and ML2 variable sets

are uncorrelated, their exact scores should not be cor-
related for either signal or background. We test this
by calculating the MIC-score for predictions from XG-
Boost models trained on ML1, ML2 and ML1+2. We
do this for K0

S where we train and test in data, K0
S

where we train in reweighted MC and test in data,
and Λ where we train and test in data. ML1 and ML2
were trained on different sets of points of equal size,
and ML1+2 were trained on both. All were tested on
the same points. The results for K0

S data to data can
be seen in figure 22. The other figures can be found in
appendix figure 43 and 44 .

As can be seen in the figure, ML2 and ML1+2 corre-
late heavily in their signal prediction, which is to be
expected since the final prediction of ML1+2 is domi-
nated by ML2. We see that the predictions of ML1 and
ML2 are not very correlated, as desired. Background
and signal is taken as points that both models classify
as belonging to either class.

4.4 Final Mass Estimate

Now, having refined and optimized our classification
methods, we feel ready for a final estimate of the particle-
masses. For this calculation we will use two XGBoost
models purely trained in data to provide us with K-
Short candidates. The two XGBoost models are trained
separately on the ML1 and ML2 feature spaces with
different training data. We then select the 100 most
certain K-Short candidates in the test data, where the
metric of certainty is√
(p2

ML1 + p2
ML2)/2 with pML1/ML2 the prediction from

ML1 and ML2 respectively. The 100 most likely can-
didates were selected out of an original 479510. These
candidates then have a corresponding v0 ks mass and
v0 ks massErr from which a weighted mean and a
corresponding χ2 can be calculated, as is done in fig-
ure 23.

We used the ’massErr’ parameter, as our previous cal-
culations (figure 5) has shown that the CERN-estimated
errors are very closely related to the actual uncertain-
ties. It should be noted that the values of the errors of
the candidates lie within the interval that was inves-
tigated.

The same procedure is applied to the lambda parti-
cles in figure 24. However, the candidates included 7
clear outliers as indicated by the cross-marker, which
were not included in the weighted mean. The 93 can-
didates were selected from an original 85680.

Correlations between K0
S predictions from models

trained and applied in data

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
L1

_d
at

a

MIC:
Total = 0.142
Signal = 0.235
Background = 0.073

MIC:
Total = 0.279
Signal = 0.206
Background = 0.237

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
L2

_d
at

a

MIC:
Total = 0.32
Signal = 0.677
Background = 0.109

0.00 0.25 0.50 0.75 1.00
ML1_data

0.0

0.2

0.4

0.6

0.8

1.0

M
L1

2_
da

ta
0.0 0.5 1.0

ML2_data
0.0 0.5 1.0

ML12_data

Figure 22: MIC-correlation between different model out-
puts. ML1 and ML2 were trained on different sets of points
of equal size, and ML1+2 were trained on both. All were
tested on the same points. On the diagonal, probability den-
sity distributions with log(N) on the y-axis is drawn with a
line to indicate the background/signal split. In the lower
half, contour plots for all prediction scores are plotted as
well as classified background (orange) and signal (green).
Background and signal is taken as points that both models
classify as belonging to either class. In the upper half, sum-
mary MIC-scores for all scores, background only and signal
only are shown

This gives the final mass-estimates as:

K0
S: 498.1± 0.5MeV

Λ/Λ̄: 1116.15± 0.18MeV

22

Figure 23: Weighted mean of the 100 most likely K0
S

candidates provided by ML1 and ML2, both trained
in data but on different sets. The metric of likeli-
hood is

√
(p2

ML1 + p2
ML2)/2 with pML1/ML2 the predic-

tion from ML1 and ML2 respectively. The y-axis is the
v0 ks mass for the points and the errorbars are the asso-
ciated v0 ks massErr

Figure 24: Weighted mean of the 93 most likely Λ
candidates provided by ML1 and ML2, both trained in
data but on different sets. The metric of likelihood is√
(p2

ML1 + p2
ML2)/2 with pML1/ML2 the prediction from

ML1 and ML2 respectively. 7 outliers were discarded for
the calculation of the weighted mean. The y-axis is the
v0 la mass for the points and the errorbars are the associ-
ated v0 la massErr

5 Discussion

In this section, the results will be discussed, in or-
der to evaluate the success of the models and which
changes would have been beneficial looking at the
project in retrospect. The discussion will end with
suggestions for future work.

5.1 Correlations

The analysis of correlations in the data yielded very
insightful information, especially in this case where
the data set is undocumented. Placing the groups in
categories gave the possibility of determining if a fea-
ture should be discarded based on the group it be-
longed to22.

5.1.1 Correlations with Mass

In this project the method for labeling the training
sample in the data was based upon the mass. For
this reason it was necessary to decorrelate the fea-
ture space with the mass to not end in a situation
like figure 6 where the mass and not the signal it-
self, is fitted. Even though the performance proved
very strong with this type of label, throwing out fea-
tures correlated with mass have no doubt weakened
the models significantly. But in a data set where no
truth label is provided this proved to be necessary.

5.1.2 Correlations Between Predictions

As can be seen in figure 22, we successfully decorre-
lated the prediction scores for signal and background
between ML1 and ML2 for the classification of K0

S-
particles, as was described in section 4.3.2 as we had
hoped for. It is expected that there is some correlation
since both classifiers are useful, but the fact that this
correlation is solidly below 0.5 is encouraging23.
We also see that this same figure indicates that there
is a significant aspect of disagreement between what
ML1 and ML2 classifies as signal (which can be seen
as the long horizontal signal contour). This is espe-
cially due to the fact that ML1 in general classifies less
points as signal, and more as background, because it
generally has less predictive power.

22A good example of this is the ’a0’, ’a0z’, ’a0xy’ set where most
information can be contained in one

23For two perfect classifiers the correlation would be 1, since they
would give 1 for all true signal points and 0 for all true background
points

23

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Trained in data, tested in data
ML1+ML2 AUC: 0.9790
ML2 AUC: 0.9473
ML1 AUC: 0.9807

1100 1120 1140
K0

s mass

0

50

100

150

200

250

N

Figure 25: Classifying Λ particles by training XGBoost
models in data, with the features of ML1, ML2 and
ML1+ML2. Here we see that the features of ML2 correlate
with v0 la mass.

As would be expected from other evaluation meth-
ods, we see that the correlation for signal classifica-
tion between ML2 and ML1+2 is very high (a MIC-
score above 0.7 is high [7])

5.1.3 Lambda Features

When using our tools on the Lambda and Lambda-
bar, we erroneously reused the ML1 and ML2 features
for training, believing the internal correlations to be
somewhat comparable to the K-Short. As we calcu-
lated the MIC-scores and SHAP-values, it quickly be-
came clear that this was not the case. ’v0 pt2’ and
’pT’ had heightened impact on the training, while ’Al-
pha/alpha’ and ’thetastar’ were significantly more cor-
related with mass. If we had allocated more time to
the classifications of Lambda-particles, running a proper
analysis would have been feasible. The correlations
can be seen in table 8 and the most important features
can be seen in figure 30.

Our predictions in this case were still strong and did
not lead to serious misclassification of background as
in fig 6, but we did see some correlation with mass.
More predictions were in general less confident, which
we attribute to the smaller amount of signal. The
prediction landscape and correlations changed signif-
icantly (see figure 44). Here, using ML1 to validate
ML2 would be inappropriate since they are heavily

correlated.

5.2 Model Evaluation Methods

The issue of no confident true labels existing in data
proved a challenge on both sides of the actual classifi-
cation. After a model was tested, it was not clear how
to accurately quantify the quality of a classification.
In this project two methods for making ROC-curves
without labels were introduced.

Firstly, the signal and background could be estimated
using a fit of the peak with a double Gaussian fit on
top of a polynomial background. This proved to be
reliable as seen in figure 10 where the estimated AUC
was around 0.01 off. Thus this method was the main
indicator for the quality in the other results. This method
should also be easily applicable to other peaks as seen
when the method was modified to work with the Lambda
peaks in section 4.2.

Secondly, the use of cross-validating two uncorrelated
models was tested. Doing this with ML1/ML2 gave a
reasonable estimate on the least accurate of the mod-
els, whereas the result for the better model seems un-
even. This is a result of the more accurate model clas-
sifying the clear signal and background correct and
then classifying signal with different amount of ran-
dom labels in the middle. Even though this method
provides some insights, the first of the tested meth-
ods proved more robust and accurate. A flaw with the
second model is also that the feature spaces should be
split in two completely uncorrelated models, whereas
the first can take the entire feature space as long as it
is not correlated with the mass.

5.3 Advantages of the Monte Carlo Simu-
lation

The MC data set gave us an opportunity to obtain a
strong intuition for the signal and background distri-
butions, as well as providing an independent valida-
tion method for much of our work.

Going through the trouble to make MC useful for clas-
sifying things in real data was very rewarding and
even though it turned out that many of the variables
that benefitted strongly (’pv0 x’, ’pv0 y’,’pv0 z’, ’ntrk pv0’)
were not very useful for classifying events, since they
are very noisy parameters as can be seen in figure 41a.

Reweighting can be quite a lot of work and requires
careful consideration, and often renders negligible im-

24

provements but nonetheless, it rarely worsens the clas-
sification and might improve it.

5.4 Accuracy

5.4.1 Accuracy of Mass Predictions

We can compare the fits from section 4.4 to the values
given in a review paper ([9]):

KS : 497.611± 0.013MeV

Λ/Λ̄ : 1115.683± 0.006MeV

Comparing this to our fits, we have z = 0.98 and z =

2.59 respectively (z = |µ1−µ0|√
σ2

1+σ2
2

), which are both not

completely unreasonable.

5.4.2 Choice of Model

In section 2.3.1 we discussed the cuts based on phys-
ical intuition found in the ATLAS paper. We unfortu-
nately heard of these late, but having made these cuts
from the very start could potentially have improved
the models. However, this project was mainly con-
cerned with attacking the problem from a ”blind” ap-
proach, using quantitative principles whenever pos-
sible. This of course somewhat worsens our perfor-
mance, but nonetheless means that we are not biased
towards any prior physical understanding that would
hinder new discoveries.

In most cases we have refrained from using the sim-
ple cuts before using any classifier, since the classifier
is more robust if given a lot of high-confidence back-
ground.

In general we used XGBoost due to its general higher
performance (see table 7) and relatively fast training
time.

5.5 Future Work

In this project many methods were tried, but the realm
of machine learning is rapidly expanding and new
methods are introduced often. The project could eas-
ily have continued into the field of Neural Networks
which come in many forms. This was tried shortly
(see sec 7.1.6 in appendix), but it became clear that
much more work in the feature space had to be done

before any neural network could compete with the
Boosted Decision Trees.

The Boosted Decision Trees also have many hyper pa-
rameters which were only understood but not opti-
mized in this project, except for little experiments (see
appendix section 7.1.5). Much improvement could
potentially be found here, but besides letting the num-
ber of estimators approach infinity, we had no short,
clear answer for an improvement that wouldn’t lead
to overfitting.

This project was done with only a superficial overview
of the field of High Energy Physics. There is definitely
a lot to gain here. As described in section 2.3.1 a lot
of cuts are already made in the data, but many other
could be beneficial but was not done in this project.
Looking back at the project, it becomes clear that fea-
tures like pseudorapidity which was just discarded,
could have been used to make a cut in the data to
improve the quality of remaining data. The feature
space also included features such as number of hits
in the different layers, which further could have re-
duced the number of events with poor quality.

Most of the methods in project was developed and
tested on the K-Short particle, but tried on the Lambda.
However, a lot of further analysis could have been
made of the Lambda particle. In addition, the lambda-
bar particle was barely touched in the project, even
though comparison of the results from Lambda and
Lambda-bar particle would have been of great inter-
est.

One way of improving our prediction of the mass of
the Lambda/Lambda-bar is using the fact that their
masses must be equal. Thus we could have combined
two independent final mass estimates with uncertain-
ties into one total estimate of the Lambda invariant
mass. This also provides a reliable validation of our
mass estimates for Lambda and Lambda-bar.

Furthermore, we would like to dig more into the track
reconstruction itself.

6 Conclusion

Throughout this project the main finding is not neces-
sarily a single result but the use and experience with
the different methods of attack on a very general prob-
lem: Determining signal from noise in a data set with
a large feature space.

In the real data a lot of experience was gained ex-

25

ploring the robustness of Boosted Decision Trees to
”pseudo-labels” based on mass. This required the in-
vestigation of the features to make sure they were not
correlated with this result. Without labels in the Data
it was also a challenge to evaluate the accuracy of a
model. This was primarily done by using fits to deter-
mine the signal and background in order to estimate a
ROC-curve. This estimate proved very valuable and
was close to the actual value when tested in Monte
Carlo.

The generalisability of the ideas of the project espe-
cially showed when applying all of the tools we had
developed for K-Short peak finding for Lambda/Lambda-
bar peak-finding, which was done primarily in the
last week of the project without great issues.

One would assume that using the full parameter space
couldn’t possibly lead to a worse model for predict-
ing peaks, but during the course of the project it has
turned out that correlations between the mass and the
parameters used for classification generally should re-
sult in those parameters being taken out of the model,
since this leads to high disturbances in the central in-
vestigation of the mass peaks. This is especially im-
portant when using mass as a label, but generalizes
to MC-models that are to be applied in data, as well
as any model using any specific parameter to create
pseudo-label.

Having a large amount of data helps every aspect of
statistical problem solving. Especially a great num-
ber of well-simulated data points makes life easier, as
the truth label enables testing different classification-
methods in a quicker and clearer way.

No matter how well a Monte Carlo simulation works,
there will always be some discrepancy between the
created data and real life. We have found that this
problem should not be seen as a barrier, as it can be
negated by creating surprisingly certain truth labels
solely in data.

If one were to cross-validate a non-perfect classifier
with another non-perfect classifier, the resulting ROC-
curve is likely to be a product of the accuracy of the
model used for validation, more than the classifier
one wishes to evaluate.

Another general takeaway is that it pays off to be-
come comfortable with the data before applying the
larger statistical machinery. While the amount of time
invested in correlations rendered great improvements
in our result, it would probably also have improved
the result if notions of data quality, such as a low

pseudorapidity, were considered.

6.1 Acknowledgements and Final Remarks

First of all, we would like to thank our advisor, Pro-
fessor Troels C. Petersen, for inspiring us to take up
this very interesting problem through the Applied Statis-
tics course, and for continued support and inspiration
throughout the project.

Secondly we would like to thank each other for many
weeks of hard work, dedication and clever ideas. It
has been fun, challenging and very rewarding to try
to come up with, and validate, all of our ideas.

We would also like to express our respect for the AT-
LAS team. Their results are incredible, and we have
but spotted the tip of the iceberg of the amount of
work that goes into creating, and cross-validating their
results.

26

7 Appendix

7.1 Honorable Mentions

During the course of the project, several ideas were scrapped for either being unfruitful or too large to tackle.
Many of the things we spent significant amounts of time on never made it into the report or were only men-
tioned as passing remarks. Most had some interesting lessons learned anyways, so this section is dedicated to the
discarded ideas with the most potential.

7.1.1 XGBoost on UMAP

After playing around with UMAP, a dimension-reduction algorithm, we realised a simple, visual cut in a two-
dimensional representation was surprisingly good at separating signal from background. We set out to try train-
ing a boosted decision tree on transformed data in a variety of different dimensions. The main motivation behind
the idea, was the fact that a supervised UMAP can work towards maximizing separation in parameter space,
thereby improving the value of every leaf in the boosted forest.

As we only had eight weeks, and this was not the purpose of the project, we had to stop work on this.

7.1.2 uBoost

About six weeks into our eight week project we found a paper titled ”uBoost: A boosting method for producing
uniform selection efficiencies from multivariate classifiers”[10]. This paper seemed to solve the problem of decor-
relating a BDT with the mass without removing information in the form of correlating parameters. While the
algorithm is immensely slow, the advantages can clearly be seen in figure 26. uBoost builds upon the AdaBoost-
framework so the AdaBoost algorithm was used when comparing.

7.1.3 Uncertainty in Data

In figure 5 we found a constant offset between the uncertainty we find in the data and the uncertainty estimated
by CERN. This discrepancy was never accounted for.

7.1.4 COVID Modeling

During the recent spike in COVID-19 infections in Denmark, the group contributed about a week’s worth of time
to fitting and improving a SEIR-model for different local outbreaks in order to evaluate the effects of different
lockdown measures. This was complicated by the fact that most numbers are not confidently tracked and so
the data is very noisy. Furthermore, the uncertainties were in general not known and this presents a large issue.
During this week we mainly gained insight into speeding up differential equation solvers, and how to produce
confidence intervals on a parameter that we could not fit by using a Monte Carlo simulation on the parameters
that we could fit. This could then be used to estimate whether or not the uncertainty on the number of positive
tests was estimated correctly. This issue of providing uncertainty estimates for parameters where they simply do
not exist is sure to show up again, as it does all the time in e.g. astrophysics.

7.1.5 Hyper-parameter Optimization

Most of the work with the Boosted Decision Trees was done using out-of-the-box implementations from various
sources. Some parameters were tweaked, but the algorithms have hundreds of variables to control and many
interesting features. Due to the interconnectedness of the parameters, searching trough hyper-parameter space is

27

Figure 26: It is clear from the bottom row of plots, that the trained uBoost are less correlated with mass than even the least
correlated group of features (here ML1+ML2) without sacrificing any prediction capability.

very computer-intensive compared to the performance gain. We have mainly resorted to the default parameters,
sometimes adjusting settings based the advice from this brilliant internet resource[11].

7.1.6 Neural Networks

Following the trends of the times, we wanted to see if neural networks could improve the classification of the
Boosted Decision Trees. After some work using Keras and PyTorch, we quickly noticed this would be beyond the
scope of the paper, as we found training times to be orders of magnitude larger without any obvious improve-
ments.

7.1.7 PCA before XGBoost

Much in the vein of ’UMAP XGBoost’, running the analytical PCA could improve the training of decision trees.
We tried but it gave no obvious improvements.

7.1.8 Comparing the algorithms

We found that comparing the different Boosted Decision Trees could tell us something about what to use during
the course of this project. The results were surprising as there was quite a stark difference between the algorithms
(see table 7). We did not know what to do with the information, so this ended up with the honorable mentions.

28

ttrain [s] tpredict [s] auc
AdaBoost 371 8.58 0.982
XGBoost 108 1.12 0.993
LightGBM 6.57 0.467 0.990

Table 7: Comparisons of the three main BDT-algorithms. Trained on 2 · 106 data points with the features from ML1+2. The
prediction was for 106 MC data points and the AUC is calculated using truth-labels.

7.2 Appendix (Figures and tables)

7.2.1 Distributions of Data and MC

Figure 27: Comparison of distributions of signal and background in MC and data for given features. The top part shows the
ratio between the signal (green) and background (red) distribution between data and MC

29

4 3 2 1 0 1 2 3 4
100

101

102

103

104

105

pseudorapidity

MC signal
MC background
MC
Data signal
Data background
data

101

100

10 1

signal data/mc ratio
background data/mc ratio

Figure 28: How well the signal distribution estimation for data works compared to MC, given that the underlying distributions
for MC and data are equal.

30

7.2.2 Correlation tables for Λ and Λ̄

Table 8: Table displaying the correlation with v0 la mass in MC using both the MIC method as well as the linear Pearson
correlation

Feature MIC (Data) ρ (Data)
thetastar 0.71 0.74
alpha/Alpha 0.71 -0.66
v0 p2 0.57 0.81
v0 qOverP2 0.57 0.60
pL2 0.55 0.81
v0 pz2 0.44 0.12
v0 la massErr 0.43 0.67
v0 lb mass 0.41 -0.41
v0 pt2 0.38 0.66

Figure 29: I should be a part of table 8

Figure 30: Most Valuable Parameters in descending order

31

Figure 31: Feature importance for ML1 trained in data for lambda

Figure 32: Feature importance for ML2 trained in data for lambda

32

7.2.3 Signal Distribution

300 400 500 600 700 800 900
K0

s mass [MeV]

0

20000

40000

60000

80000

100000

120000

140000

N

MC

The bands in v0_ks_mass from which the distributions are drawn
Total mass distribution
Signal and background
Sidebands
Background
(includes sidebands)

3 2 1 0 1 2 3
pseudorapidity

0

5000

10000

15000

20000

N

Data signal distribution estimation for pseudorapidity in MC
Estimated signal distribution
low mass sideband
high mass sideband
True signal distribution
Signal background distribution
Sidebands distribution

Figure 33: Here we show the same procedure as in figure 9 but for MC instead of data, in order to investigate the validity of
the method. The added limegreen line in the right plot is the true distribution for MC, also for the feature pseudorapidity.

7.2.4 Model comparison

7.2.5 Reweighting

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Estimated ROC curve, AUC ~0.9072

400 425 450 475 500 525 550 575 600
k-short mass

0

1000

2000

3000

4000

5000

6000

N

Distributions in mass

4 2 0 2 4 6 8
logit(probability)

0

2000

4000

6000

8000

10000

N

Logit transformed probabilities

Figure 34: ROC curve estimation from mass of ML1 trained in scaled MC for the K-short particle.

33

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Estimated ROC curve, AUC ~0.9833

400 425 450 475 500 525 550 575 600
k-short mass

0

1000

2000

3000

4000

5000

6000

N

Distributions in mass

5 0 5 10
logit(probability)

0

2000

4000

6000

8000

10000

12000

14000

N

Logit transformed probabilities

Figure 35: ROC curve estimation from mass of ML2 trained in scaled MC for the K-short particle.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Estimated ROC curve, AUC ~0.9004

1090 1100 1110 1120 1130 1140
k-short mass

0

250

500

750

1000

1250

1500

1750

N

Distributions in mass

2 0 2 4 6 8 10
logit(probability)

0

500

1000

1500

2000

2500

3000

3500

N

Logit transformed probabilities

Figure 36: ROC curve estimation from mass of ML1 trained in scaled MC for the lambda particle.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Estimated ROC curve, AUC ~0.9588

1090 1100 1110 1120 1130 1140
k-short mass

0

500

1000

1500

2000

2500

N

Distributions in mass

7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
logit(probability)

0

1000

2000

3000

4000

5000

N

Logit transformed probabilities

Figure 37: ROC curve estimation from mass of ML2 trained in scaled MC for the lambda particle.

34

7.2.6 Displaying Decision Boundaries in Higher Dimensions / Decision Boundaries for Correlated Features

Figure 38: Decision boundaries for correlated features. Here the two features from figure 3 are rotated by 45 degrees into each
other, resulting in a pearson correlation of about -1.

7.2.7 ROC-curves for XGBoost in MC

Figure 39: ROC curves for XGBoost trained in MC and tested in MC.

35

7.2.8 Fitting the Uncertainties

Figure 40: The fit for every point in figure 5.

36

400 450 500 550 600
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014
v0_ks_mass

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2
v0_chi2

2000 0 2000
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

v0_px1

3 2 1 0 1 2 3
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

v0_phi1

2000 0 2000
0.0000

0.0005

0.0010

0.0015

0.0020

v0_py1

4000 2000 0 2000 4000
0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

v0_py

2000 0 2000
0.0000

0.0005

0.0010

0.0015

0.0020

v0_py2

3 2 1 0 1 2 3
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
v0_phi2

2000 0 2000
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

v0_px2

4000 2000 0 2000 4000
0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

v0_px

1.0 0.5 0.0 0.5 1.0
0

2

4

6

8

10

12

14

16
cosTheta

0 250 500 750 1000 1250
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
a0xy

0 500 1000 1500
0.00

0.01

0.02

0.03

0.04

0.05

a0

1000 500 0 500 1000
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

v0_y

1000 500 0 500 1000
0.000

0.005

0.010

0.015

0.020

0.025

v0_x

0 100 200 300
0.00

0.05

0.10

0.15

0.20

0.25

v0_rxyErr

0 500 1000 1500 2000
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

v0_rxy

6000 4000 2000 0 2000 4000 6000
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

v0_z

200 100 0 100 200
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008
pv0_z

0.8 0.6 0.4
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
pv0_y

0 50 100 150 200
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

ntrk_pv0

1.0 0.8 0.6 0.4
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

pv0_x

(a) Original distributions

400 450 500 550 600
0.000

0.002

0.004

0.006

0.008

v0_ks_mass

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.2

0.4

0.6

0.8

1.0

v0_chi2

10 5 0 5 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

v0_px1

0.25 0.00 0.25 0.50 0.75 1.00 1.25
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

v0_phi1

10 5 0 5 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

v0_py1

10 5 0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0
v0_py

10 5 0 5 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
v0_py2

0.25 0.00 0.25 0.50 0.75 1.00 1.25
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

v0_phi2

10 5 0 5 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
v0_px2

10 5 0 5 10
0.0

0.2

0.4

0.6

0.8

v0_px

1.0 0.5 0.0 0.5 1.0
0

2

4

6

8

10

cosTheta

0 50 100 150 200
0.0

0.1

0.2

0.3

0.4

a0xy

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

a0

75 50 25 0 25 50 75
0.0

0.1

0.2

0.3

0.4

v0_y

75 50 25 0 25 50 75
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

v0_x

0 50 100 150 200 250
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
v0_rxyErr

0 20 40 60 80
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

v0_rxy

20 10 0 10 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
v0_z

0.5 0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

pv0_z

4 2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

pv0_y

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
ntrk_pv0

4 2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0
pv0_x

(b) Scaled and reweighed distributions

Figure 41: Comparison of original and processed (scaled and reweighted) distributions across the mass-uncorrelated parame-
ters

37

400 425 450 475 500 525 550 575 600
v0_ks_mass

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

N

KS w/o reweight 0.152
KS with reweight 0.011

Original MC
Reweighted MC
Data

0 2 4 6 8 10 12 14
v0_chi2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N

KS w/o reweight 0.081
KS with reweight 0.006

Original MC
Reweighted MC
Data

7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
v0_px1

0.0

0.2

0.4

0.6

0.8

1.0

N

KS w/o reweight 0.084
KS with reweight 0.009

Original MC
Reweighted MC
Data

0.25 0.00 0.25 0.50 0.75 1.00 1.25
v0_phi1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N

KS w/o reweight 0.014
KS with reweight 0.009

Original MC
Reweighted MC
Data

7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
v0_py1

0.0

0.2

0.4

0.6

0.8

1.0

N

KS w/o reweight 0.091
KS with reweight 0.011

Original MC
Reweighted MC
Data

6 4 2 0 2 4 6 8
v0_py

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N

KS w/o reweight 0.118
KS with reweight 0.007

Original MC
Reweighted MC
Data

7.5 5.0 2.5 0.0 2.5 5.0 7.5
v0_py2

0.0

0.2

0.4

0.6

0.8

1.0

N

KS w/o reweight 0.096
KS with reweight 0.015

Original MC
Reweighted MC
Data

0.25 0.00 0.25 0.50 0.75 1.00 1.25
v0_phi2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N

KS w/o reweight 0.016
KS with reweight 0.011

Original MC
Reweighted MC
Data

8 6 4 2 0 2 4 6 8
v0_px2

0.0

0.2

0.4

0.6

0.8

1.0

N

KS w/o reweight 0.092
KS with reweight 0.013

Original MC
Reweighted MC
Data

6 4 2 0 2 4 6 8
v0_px

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N

KS w/o reweight 0.109
KS with reweight 0.016

Original MC
Reweighted MC
Data

Figure 42: Scaled and reweighted distributions for ML1

38

Correlations between K0
S predictions from models trained in MC and applied in data

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
L1

_d
at

a

MIC:
Total = 0.142
Signal = 0.074
Background = 0.225

MIC:
Total = 0.279
Signal = 0.237
Background = 0.175

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
L2

_d
at

a

MIC:
Total = 0.32
Signal = 0.109
Background = 0.719

0.00 0.25 0.50 0.75 1.00
ML1_data

0.0

0.2

0.4

0.6

0.8

1.0

M
L1

2_
da

ta

0.0 0.5 1.0
ML2_data

0.0 0.5 1.0
ML12_data

Figure 43: MIC-correlation between different model outputs. ML1 and ML2 were trained on different sets of points of equal
size, and ML1+2 were trained on both. All were tested on the same points. On the diagonal, probability density distributions
with log(N) on the y-axis is drawn with a line to indicate the background/signal split. In the lower half, contour plots for all
prediction scores are plotted as well as classified background (orange) and signal (green). Background and signal is taken as
points that both models classify as belonging to either class. In the upper half, summary MIC-scores for all scores, background
only and signal only are shown

39

Correlations between Λ predictions from models trained and applied in data

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
L1

_d
at

a

MIC:
Total = 0.083
Signal = 0.449
Background = 0.07

MIC:
Total = 0.394
Signal = 0.22
Background = 0.401

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
L2

_d
at

a

MIC:
Total = 0.202
Signal = 0.221
Background = 0.085

0.00 0.25 0.50 0.75 1.00
ML1_data

0.0

0.2

0.4

0.6

0.8

1.0

M
L1

2_
da

ta

0.0 0.5 1.0
ML2_data

0.0 0.5 1.0
ML12_data

Figure 44: MIC-correlation between different model outputs. ML1 and ML2 were trained on different sets of points of equal
size, and ML1+2 were trained on both. All were tested on the same points. On the diagonal, probability density distributions
with log(N) on the y-axis is drawn with a line to indicate the background/signal split. In the lower half, contour plots for all
prediction scores are plotted as well as classified background (orange) and signal (green). Background and signal is taken as
points that both models classify as belonging to either class. In the upper half, summary MIC-scores for all scores, background
only and signal only are shown

40

References

[1] Regents of the University of California. Particles data group. https://pdg.lbl.gov/.

[2] Ronald A Fisher. The use of multiple measurements in taxonomic problems. Annals of eugenics, 7(2):179–
188, 1936.

[3] XGBoost developers. Introduction to boosted trees. https://xgboost.readthedocs.io/en/latest/tutorials/model.html#introduction-to-boosted-trees.

[4] Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. arXiv e-prints, page
arXiv:1603.02754, March 2016.

[5] Abhishek Sharma. What makes lightgbm lightning fast? https://towardsdatascience.com/what-makes-lightgbm-lightning-fast-a27cf0d9785e#:~:text=GOSS%20(Gradient%20Based%20One%20Side,instances%20on%20basis%20of%20gradients.&text=In%20a%20nutshell%20GOSS%20retains,on%20instances%20with%20small%20gradients.

[6] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems 30, pages 4765–4774. Curran Associates, Inc., 2017.

[7] David N. Reshef, Yakir A. Reshef, Hilary K. Finucane, Sharon R. Grossman, Gilean McVean, Peter J. Turn-
baugh, Eric S. Lander, Michael Mitzenmacher, and Pardis C. Sabeti. Detecting novel associations in large
data sets. Science, 334(6062):1518–1524, 2011.

[8] hep-ml developers. hep-ml github. https://github.com/arogozhnikov/hep_ml.

[9] Particle Data Group et al. Review of Particle Physics. Physics Letters B, 667(1):1–6, September 2008.

[10] Justin Stevens and Mike Williams. uBoost: A boosting method for producing uniform selection efficiencies
from multivariate classifiers. arXiv e-prints, page arXiv:1305.7248, March 2016.

[11] Laurae. Parameter matching between xgboost / lightgbm. https://sites.google.com/view/lauraepp/parameters.

41

https://pdg.lbl.gov/
https://xgboost.readthedocs.io/en/latest/tutorials/model.html##introduction-to-boosted-trees
https://towardsdatascience.com/what-makes-lightgbm-lightning-fast-a27cf0d9785e##:~:text=GOSS%20(Gradient%20Based%20One%20Side,instances%20on%20basis%20of%20gradients.&text=In%20a%20nutshell%20GOSS%20retains,on%20instances%20with%20small%20gradients
https://github.com/arogozhnikov/hep_ml
https://sites.google.com/view/lauraepp/parameters

	Introduction
	Data and Theory
	ATLAS Detector Layout and V0-particles
	Data and Monte Carlo Simulation
	Classification Algorithms
	Simple Cuts
	Fisher
	Decision Trees
	Boosted Decision Trees

	Investigative Algorithms
	Shapley Additive Explanation (SHAP) Values
	Correlations and Maximal Information Coefficient
	Receiver Operating Characteristic (ROC)

	Analysis
	Fit and Estimates
	KS0 (K-Short)
	Λ/Λ (Lambda/Lambda-bar)

	Parameters and Correlation
	Correlations with Mass
	Correlations between Features
	Feature Importance

	Comparison of Data and Monte Carlo
	Reweighting

	Training in Monte Carlo/Data and Classifying Real Data
	Model Evaluation

	Results
	K-Short (KS0)
	Classical Classification Models
	Reweighting
	Boosted Decision Trees

	Lambda (Λ) and Lambda-bar ()
	Model Performance on the Lambda

	Cross-validating Models
	ROC - validation
	Correlations between model predictions

	Final Mass Estimate

	Discussion
	Correlations
	Correlations with Mass
	Correlations Between Predictions
	Lambda Features

	Model Evaluation Methods
	Advantages of the Monte Carlo Simulation
	Accuracy
	Accuracy of Mass Predictions
	Choice of Model

	Future Work

	Conclusion
	Acknowledgements and Final Remarks

	Appendix
	Honorable Mentions
	XGBoost on UMAP
	uBoost
	Uncertainty in Data
	COVID Modeling
	Hyper-parameter Optimization
	Neural Networks
	PCA before XGBoost
	Comparing the algorithms

	Appendix (Figures and tables)
	Distributions of Data and MC
	Correlation tables for Λ and
	Signal Distribution
	Model comparison
	Reweighting
	Displaying Decision Boundaries in Higher Dimensions / Decision Boundaries for Correlated Features
	ROC-curves for XGBoost in MC
	Fitting the Uncertainties

