
KØBENHAVNS UNIVERSITET:
BACHELORSTUDIET I FYSIK

BACHELOR THESIS

Optimizing Reconstruction and Error Estimation
of IceCube Events Using Graph Neural Networks

Authors:
Jonas Vinther KU- ID: dlk339 GitHub
Johann Bock Severin KU- ID: msk377 GitHub
Jakob Hallundbæk Schauser KU- ID: pwn274 GitHub
Christian Kragh Jespersen KU- ID: htd809 GitHub

Advisor:
Troels Christian Petersen Email: petersen@nbi.ku.dk

This thesis consist of 35 pages of main text and 21 pages of appendices.

The thesis was handed in the 16th of June, 2021.

i

https://github.com/Vinther901/Neutrino-Machine-Learning
https://github.com/JohannSeverin/IceCube_GNN2
https://github.com/JakobSchauser/BachelorProject-IceCube-ML
https://github.com/astrockragh/IceCube 


Contents

1 Introduction 2

2 Particle Physics: Theory of Muons and Neutrinos 2
2.1 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Neutrinos and Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Muons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Cosmic Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5 Charged/Neutral Current Decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.6 Cherenkov Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 The IceCube Experiment 5
3.1 The Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 DOMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Upgrade and DeepCore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4 Retro Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.5 MCMC Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.6 Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.7 Track-like and Cascade Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Graph Neural Networks 8
4.1 Why Neural Networks? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Introduction to Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.4 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5 Custom Layer Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.6 Explainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Data 18
5.1 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Data Preparation: from Data to Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Graph Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4 Hyper-Parameter Sweep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Models 21
6.1 Global GRU Convolution (GGConv) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Extended Neighbourhoods (StateFarm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.3 Stepwise Message Encoding (AntHill) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.4 Attention-based GCN (LifeGuard) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.5 Ensemble Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7 Results and Analysis 23
7.1 Neutrino Reconstructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.2 Muon Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.3 Uncertainties from Probabilistic Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.4 Comparison of Angular Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.5 Moon Shadow Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

8 Discussion 31
8.1 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.2 Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.3 Muons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ii



8.4 Interpretability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

9 Conclusion 34

10 Further Work 34

11 Acknowledgements 35

12 Appendix 39
12.1 Notes on Numerical Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
12.2 Model Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
12.3 Target Feature Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
12.4 Muon Angle Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
12.5 Moon Shadow Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
12.6 Performance Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
12.7 Explainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
12.8 Comparison of Angular Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
12.9 From MC to Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

13 Honorable Mentions 55

iii



Abstract

The IceCube Neutrino Observatory is an experiment located at The South Pole, which aims to detect
neutrinos and other particles in the ice sheet. This thesis presents a graph learning approach to low-
energy muon/neutrino reconstruction and particle classification. The algorithms developed by the
group attempt to improve upon the currently used reconstruction algorithm, Retro. By employing the
versatile framework of graph neural networks (GNNs), we improve reconstruction speed by a factor
of O(105), directional accuracy by a factor of 15% to 20% for different performance metrics, and energy
accuracy by a factor of 13%, while simultaneously improving uncertainty estimation. If the models are
gathered in an ensemble, the overall performance was improved. This is especially significant at lower
energies, but valid throughout the 1− 104 GeV energy range. When applying these models to the task
of classifying whether a muon has stopped in the ice, we achieve an AUC of 0.93. When classifying
particle types, the model cleanly classifies muons, but struggles with distinguishing between neutrino
types.
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1 Introduction

Of all the particles in the standard model, neutri-
nos are arguably the most puzzling. They have
mysteriously small masses, exist in a superposi-
tion between different flavour-states and notori-
ously unwilling to interact with normal matter.

The IceCube Neutrino Observatory is currently the
most promising experiment in increasing our un-
derstanding of neutrinos. This project focuses on
a Machine Learning approach to reconstruction of
low-energy particles in IceCube.

Although our main interest neutrinos are very sparse
in IceCube, making up only one per million seen
particle, the rest being almost exclusively atmo-
spheric muons. This makes muons good candi-
dates for reconstruction algorithm calibration.

This thesis begins by outlining the relevant physics
before sketching out how the IceCube Observatory
works. The theory behind graphs and Graph Neu-
ral Networks (GNNs) are then introduced before
explaining our implementation in relation to the
IceCube data. An overview of the four designed
models are given along with the motivation be-
hind their design. The collective reconstructive power
of the models and their ensemble is evaluated and
discussed for different types of regression and clas-
sification for muons and neutrinos. The thesis con-
cludes with the findings of the project, several learn-
ing points, and suggestions for further work.

In this project the work is divided such that each
author presents a firm understanding of the un-
derlying theory, and each contributes with a model
architecture, overall resulting in an equal contribu-
tion by every group member.

2 Particle Physics: Theory of Muons
and Neutrinos

Understanding the building blocks of our universe
is one of the oldest, most fundamental questions
in physics. In our time, the field of high-energy
physics is responsible for cataloging these build-
ing blocks, now known as particles. While every-
thing around us is created from these fundamental
particles, observing them has proven surprisingly
tricky.

Figure 1: The Standard Model of particle physics (Im-
age source: Public Domain)

This section will provide a general overview of the
fundamental particles focusing on the parts most
relevant for the project.

2.1 The Standard Model

Currently, the best model for describing the inter-
play between particles and forces is the standard
model shown in Fig. 1.

In the standard model, particles are split into bosons,
the carriers of the known forces, and fermions, the
building blocks of matter. Because of the inherent
spin of the two, they follow the Bose-Einstein and
Fermi-Dirac statistics respectively.

Three of the four fundamental forces are mediated
by a corresponding boson. The probability of any
given particle interaction occurring is proportional
to the square of a boson-specific and energy de-
pendent coupling constant. The strong force is me-
diated by the gluon with the highest coupling con-
stant of approximately 1.1 The weak force is me-
diated by the W± for charged interaction and Z-
bosons for neutral ones - both with a coupling of
about 10−6. The electromagnetic force is mediated
by the photon and has a coupling constant equal
to the fine-structure constant ≈ 1/137. Gravity
has no apparent force-carrier in our current sys-
tem, but has a connection to the Higgs boson. The
coupling constant of gravity is somewhere around
10−37 compared to the strong force, rendering it
negligible when considering particle interactions.

The fermions, which make up most of the stan-

1making strong interactions the most likely
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dard model, have even more variety. Fermions are
further classified as either quarks or leptons. Due
to their interactions with the strong force, a phe-
nomenon known as colour-confinement means quarks
are always observed in groups of either two (mesons)
or three (baryons). In this project the main focus is
on the leptons, which are not affected by the strong
force. Therefore, a large experiment like IceCube is
required to see a significant amount of reactions.

Furthermore, the leptons are divided into columns
by their flavour: electron, muon or tau. These flavours
consist of a charged particle and its corresponding
lighter, neutral neutrino. Neutrinos are commonly
denoted by να, with α indicating the neutrino type
[1].

2.2 Neutrinos and Oscillations

Neutrinos are uncharged leptons, interacting purely
gravitationally or via the weak force - the first of
which is notoriously weak, the latter very short
ranged. They exist in overabundance but are so
weakly interacting that they are almost undetectable.

In the 1960s, Ray Davis started a radiochemical ex-
periment in a mine in South Dakota to measure the
flux of solar neutrinos. After multiple decades of
observation, he found that the solar electron neu-
trino flux was about a factor of three lower than ex-
pected. The deficit was a mystery for many years,
but was ultimately found to be caused by flavour
transitions which led to the 2015 Nobel prize in
Physics [2].

Neutrinos of the three leptonic flavors have slightly
different masses. As a consequence, the mass states
propagate through space at marginally different rates.
Since each particle exists in a quantum mechani-
cal superposition between the mass states, a mix-
ing between flavour states ensues for the individ-
ual travelling particle. Due to the connection be-
tween mass and flavour and the periodic nature
of the probability change on a macroscopic length
scale, this amounts to an oscillation between dif-
ferent flavour states. The mixing between the eigen-
states is parametrized by the Pontecorvo–Maki
–Nakagawa–Sakata (PMNS) matrix: νe

νµ

ντ

 =

 Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


 ν1

ν2

ν3



In this representation, the flavour eigenstates are
in a superposition of the mass eigenstates (and vice
versa) and can therefore be written as a linear com-
bination using the unitary mixing matrices:

|να〉 =
3

∑
i=1,2,3

Uαi |νi〉 ⇔ |νi〉 =
3

∑
α=e,µ,τ

U∗iα |να〉 (1)

Here U is a matrix element from the unitary PMNS-
matrix with i and α the different mass and flavour
states respectively [3].

Due to the Dirac equation, the mass states in vac-
uum exist as plane-wave solutions of the form:

|νi(t, rrr)〉 = e−i(Eit−pppirrr)|νi(0,000)〉

For ultra relativistic neutrinos the phase can be ap-
proximated by:2

Eit− pppirrr ' m2
i L/(2Ei) (natural units)

Where L is the traversed distance. Taking the sec-
ond part of Eq. 1 and the plane-wave solution to
define the probability of transition:

P
(
να → νβ

)
=
∣∣〈vβ | vα(L)

〉∣∣2 =

∣∣∣∣∣∑i
UαiU∗βie

−i
m2

i L
2Eα

∣∣∣∣∣
2

∝ ∑
i>j

Aijsin2

(
∆m2

ijL

4Eα

)
+ Bijsin

(
∆m2

ijL

2Eα

)

Where A and B consist of the matrix elements. This
ends up showing that, given a difference in mass,
the complex phase introduces a length and energy-
dependent transition-probability [4].

Matter introduces an effect in the wave function,
thus creating a space-dependency of the flavour
transitions. This gives neutrino detectors an abil-
ity to observe collections of mass, an example of
which is the Earth’s core, clearly visible in Fig. 2.

2.3 Muons

Every day, 275 million cosmic rays are detected
by IceCube. Only about one in a million of these
is an atmospheric neutrino. For this reason, the
more readily interacting muons are of great inter-
est. One of the advantages of muons are that they
have a sufficiently short penetration depth in the

2This holds for all observed neutrinos since their masses
are at least a factor 106 less than their energy
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Figure 2: Neutrino oscillation plot. The Earth’s core is
visible as a perturbation at about 8 GeV for cos(θz) ≈
−0.8 (Image source [5])

.

ice to be completely stopped within the experiment.
This gives us a good calibration tool for regressing
energy, by acquiring a sample of stopped muons
where we know the kinetic energy displaced in the
detector [6].

The rate at which a muon deposits energy in the
ice is subject to many processes. A simplified overview
is presented in Fig. 3. Since the differential cross-
section is momentum-dependent, muons with en-
ergy > 10 TeV deposit energy at a high rate and
are very rare. Muons with low energies < 50 GeV
are quickly stopped by the Coulomb interaction in
the ice. Thus most muons in IceCube are seen in
the approximate interval 50 GeV < Eµ < 10 TeV.

2.4 Cosmic Rays

The Earth is constantly bombarded by a number of
particles from the universe. As these particles in-
teract with the atmosphere, they decay into other
particles. Most interestingly for us, these collisions
can result in both muons and neutrinos being cre-
ated. The most common example is the pion to
muon to electron decay which creates neutrinos in
flavour-proportions of (νe : νµ : ντ) = (1 : 2 : 0).
(Illustrated in the Feynman diagram in Fig. 5.)

Since almost all particles observed in IceCube come
from the atmosphere (see Fig. 4), the muons come
primarily from above the horizon of the experi-

Figure 3: The rate at which muons radiate energy as
a function of muon energy. While the figure is based
on stopping power in Copper, the relevant effects and
momentum-dependency are shown. (Image source:
[7])

Figure 4: Theoretical flux as a function of energy with
our approximate energies of interest marked in blue.
(Image source: [8])

Figure 5: A Feynman diagram of the charged pion de-
cay. The initial pion could also be negatively charged,
changing the sign of all charges for the subsequent par-
ticles.
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ment, partly due to their short lifetime and pene-
tration depth, whereas neutrinos due to their faint
interaction are seen from every angle. As neutrino
oscillation is dependent on the length and time of
travel, we see different neutrino flavours at differ-
ent zenith angles and energies, as shown in Fig.
2. Keep in mind, the distribution of neutrinos as
a function of zenith is reminiscent of sin(θz) since
the area of the latitudinal bands goes as
dA = 2πr2sin(θ)dθ. Consequently, IceCube sees
less neutrinos through the center of the Earth com-
pared to the horizontal.

2.5 Charged/Neutral Current Decays

Neutrinos have two distinct weak interaction types,
differentiated by the mediating boson type: charged
current (via the W-bosons) and neutral current (via
the Z-boson). The interactions are named due to
the W-bosons allowing interaction with an electric
charge, while the Z only affects the spin and mo-
mentum of the interacting particles.

As the neutral current always decays into a Z and
a neutrino (with the energy split about evenly be-
tween them), only half of the incoming energy is
visible to the detector due to our current inabil-
ity to consistently observe the neutrinos [9]. Neu-
tral current corresponds to about 10-15% of the col-
lected data. It is common to separate the two types
of events, training only on the easier charged cur-
rent events, however this separation was not made
in this thesis. The Feynman diagrams for neutral
and charged current decays can be seen in Fig. 6.

2.6 Cherenkov Radiation

In the IceCube experiment the particles are not de-
tected directly, instead the particles are instead found
by looking for emitted Cherenkov light in the ice.
When a charged particle moves through a medium,
it emits radiation which excites the molecules around
it. Upon returning to their ground state, the molecules
re-emit photons. For superluminal particles with
v > cmedium the particle exceeds the speed of the
photon waves (which propagate with cmedium). 3

Similar to the sonic boom when a jet travels faster
than the speed of sound, the light from the ex-
cited molecules will create a delayed wave trailing

3This does not contradict special relativity since v <

cvacuum

Figure 6: A schematic of the difference between a neu-
tral and charged current decay. In the charged case, the
primary lepton is visible in the detector, while for the
neutral case, the primary neutrino is generally not vis-
ible. This amounts to the visible energy in the NC case
being lower by about a factor 2.

Figure 7: An illustration of the wave front created by a
charged, superluminal particle. (Image source: [10])

the charged particle. This phenomena is known as
Cherenkov radiation and as the emitted light usu-
ally lies around the ultraviolet band, it is seen as a
bright blue light [10]. An illustration is shown in
Fig. 7.

3 The IceCube Experiment

This section provides an overview of the IceCube
detector, how measurements are made, how sim-
ulations are carried out, and what considerations
can be made regarding the forthcoming observa-
tions.

3.1 The Detector

While most detectors are built from the ground up,
filled with material for particles to interact with,
IceCube uses multiple gigatons of ice in the pre-

5



Figure 8: A schematic of the layout of the IceCube Neu-
trino Observatory (Image source: [15])

existing glacier on The South Pole. As the name
suggests, IceCube is shaped as a hexagonal cylin-
der. The neutrino observatory, which is the largest
in the world, took about a decade to build, finish-
ing in 2010. The main detector array consists of
5160 sensors split between 86 strings. The strings
are about 2.5 km long, spaced about 125 meters
apart with sensors every 7 meters [11].

On top of the ice, there are 162 tanks, each contain-
ing two sensors. This surface-based sensor-array is
called IceTop and is used to filter atmospheric par-
ticles from astrophysical events. This method is
named Veto [12].

The physical expanse of IceCube was chosen for
the purpose of detecting neutrinos and stopped
muons. This means it should be large enough for
some muons to expend all their energy, while also
not so large as to have too many local events [13].

As IceCube was being built, multiple irregularities
showed themselves. First, a dust layer lies at a
depth of about 2000 meters, as seen in Fig. 10. Sec-
ondly, to lower the DOM-filled strings into the ice,
cylindrical shafts were dug. When the now sensor-
populated holes were refilled with water, bubbles
were created. As the water froze, the bubbles were
suspended in an unpredictable way creating non-
trivial scatterings for light along the shafts [14].

3.2 DOMs

The main sensors in IceCube are the DOMs (Digi-
tal Optical Modules). These spherical, glass-covered

Figure 9: A DOM. (Image source: [17])

detectors take advantage of the light from Cherenkov
radiation to detect superluminal particles (Fig. 9).
Once triggered, a DOM will record the hit for about
6.4µs or 0.43µs depending on the internal digitizer
used, capturing the waveform with an onboard pho-
tomultiplier tube [16]. While the current genera-
tion of DOMs are built with sensors aimed down-
wards to mostly catch neutrinos, the generality of
the design has allowed IceCube to also be used for
detection of other particles (muon-detections be-
ing the most prevalent).

3.3 Upgrade and DeepCore

DOMs have been in IceCube since it was first opened
for operation, but the observatory has seen ma-
jor updates to its structure. First, the hexagonal
grid of sensors in IceCube proved to have a ma-
jor design flaw. Some particles can be angled in
a way that they travel down the rows of DOMs
while barely registering on any (see purple arrow
in Fig. 10). Thus the first upgrade, DeepCore, was
conceived [18]. DeepCore expanded on the cen-
tral part of the experiment with 480 DOMs, rais-
ing the density of sensors and breaking the dis-
crete symmetry. As seen in Fig. 10, the DeepCore
DOMs are mainly placed below the dust layer with
a small portion of sensors placed above serving as
a veto module to filter out atmospheric particles.
The second upgrade, simply called Upgrade, is still
in progress. Upgrade will add 750 new sensors, D-
Eggs and MDOMs, with more advanced designs
and optical detectors in multiple directions [19].
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Figure 10: DeepCore. (Image source: [20])

3.4 Retro Reconstruction

The main regression algorithm employed at Ice-
Cube is called Retro Reconstruction and is based on
a Maximum Likelihood Estimator [21]. To speed
up calculations, the algorithm uses pre-generated
lookup-tables of light propagation throughout the
detector. Retro is reliable and precise but is com-
paratively slow, on average taking 5-40 seconds
per reconstruction, but upwards of 100 seconds for
certain events. In this thesis it will be used as a
baseline for comparing results. Since the average
daily flux of triggered events in IceCube is on the
order of 108, faster reconstruction is paramount.

3.5 MCMC Simulations

One of the largest bottlenecks in the Markov Chain
Monte Carlo (MCMC) simulation of muons is the
propagation through the atmosphere and ice, long
before a particle reaches the detector. MuonGun
circumvents this problem by utilising data from
previous (more advanced) simulations and simply
tries to match the parameter-distributions. As the
particles are ’created’ at the very edge of the de-
tector, MuonGun has the ability to quickly create

large training samples of atmospheric muons at a
fraction of the required computing power [22].

Moving up in complexity, Corsika is a relatively
old algorithm, using MC methods to simulate air
showers of many different types. Through eight
major iterations, it has stayed a staple in the atmo-
spheric HEP community since its creation in 1998.
As it looks at many of the likely methods of de-
cay, it is accurate for most detector arrays. Corsika
works especially well at higher energies [23].

Genie is the final source of MCMC data with di-
rect relevance to our project. Genie is a state of the
art neutrino simulation collaboration, spanning all
facets of the problem [24]. From the theoretical
perspective to analysing newly collected data, the
Genie-group works to create one of the most phys-
ically accurate data generators. Genie provides the
main data and truth values for the neutrino work
of the OscNext group.

3.6 Cleaning

The DOMs of IceCube are highly sensitive and sub-
ject to frequent noise of the order ≈ 1 kHz, but as
they operate on nanosecond timescales, they are
still quite reliable. Nonetheless, due to the noise,
strict requirements have to be met before a DOM
is triggered. This is determined by the hard local
coincidence (HLC) condition, where a minimum
of DOMs have to trigger within a short time span
(±1000 ns). IceCube uses the ”SMT8” trigger, which
is met when 8 DOMs satisfy the HLC condition
in a 5 µs window, and the pulses from DOMs will
be logged from −10 to 10 µs relative to the trigger
[18].

Since a lot of noise is generated from the DOMs
themselves, not all pulses within the logged time
are associated with the actual event, nor are all
logged events actual events. To clean the pulses
in a single event, IceCube uses the Seeded Radius-
Time (SRT) cleaning. Here pulses are stored if they
satisfy that another pulse is found within R = 150 m
and |δt| = 1000 ns (equal to a velocity of 0.5c). This
is applied iteratively, starting from the pulses trig-
gering the ”SMT8” condition, and adding all the
events that satisfy the RT criterion [25]. As each
event consist of multiple triggered DOMs, many
of which are due to noise, 7 levels of post-cleaning
exist, where a higher cleaning level corresponds to

7



Figure 11: The two most common event types for neu-
trinos. A tracklike event is shown on the left, and a
cascade event on the right. (Figure source: [27])

a less noisy sample.

3.7 Track-like and Cascade Events

When regressing the trajectory of a neutrino, it
should be noted that the different neutrino types
react quite differently with the ice. For tau-neutrinos,
ντ, the decay will result in a tauon that quickly de-
cays. The electron from νe also quickly interacts
with the ice. Thus the two types of decay are very
localized in the detector. These are called cascade
events and are generally hard to regress, since the
shower does not leave a clear directional asymme-
try. However, the muons originating from muon
neutrino decays travel significantly further, due to
their higher mass, and leave a track of light in the
detector. These events are called track-like events
and are easier to regress [26].

A representation of the difference can be seen in
Fig. 11.

4 Graph Neural Networks

This section contains the theory behind using neu-
ral networks in prediction tasks, an overview of
the general learning procedure, and specifically,
learning on mathematical graphs.

4.1 Why Neural Networks?

Before we dive into understanding neural networks
(NN), one might ask: Why bother with these strange
black box methods at all? Our choice to study event
reconstruction through machine learning on graphs
was influenced by both the strengths and weak-
nesses of NNs in contrast to algorithms - the pri-
mary strength being the universality of NNs. Two
theorems, one regarding network width, the other

network depth, taken together as the Universal Ap-
proximation Theorem (UAT), provide the basis for
this. Together these state that any function can be
approximated to an arbitrary precision by an NN if
allowed to extend to arbitrary size in either depth
or width. Thus, any continuous function can in
theory be approximated to arbitrary precision, but
the theorem does not state how to find said NN.

However, the true strength of NNs is shown when
approximating a function that does not yet exist,
which can lead to new discoveries, breakthroughs
in performance, or a pseudo-proof that current al-
gorithms are working at the information limit. While
this seems wonderful, one must realize that this
is by no means guaranteed to be achieved by any
specific network.

The NNs also have a few drawbacks compared to
classical statistical models. First of all, large datasets
are required in order to achieve convergence. Sec-
ondly, NNs are trained stochastically and two net-
works are therefore not guaranteed to be the same
even given the same initial starting point, data and
parameters for training. Furthermore, the complex
nature of NNs makes them very hard to interpret.
Each of these problems constitute an area of re-
search in themselves.

4.2 Introduction to Neural Networks

Artificial NNs are made to simulate the brain’s neu-
ral structure, with each neuron sending signals along
to the next depending on its inputs and inherent
hidden states. In a simple NN, we consider per-
ceptrons as seen in Fig. 12. The network is then
built from consecutive stacking of several connected
hidden layers each being a vector of perceptrons h.
Only allowing connections in one direction ren-
ders a feed-forward network. A single hidden state
in h is indexed as hi. hi is calculated summing each
value from the previous layer separately scaled by
connection weights wji, and adding a bias bi:

hi = ∑
j

wjixj + bi (2)

Now going from one layer to the next will be equal
to the matrix multiplication with the weight ma-
trix W :

ht+1 = W tht + bt (3)
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Figure 12: Illustration of
a single perceptron.

Figure 13: 4 perceptrons
being connected to 8 in a
feed-forward NN

where the superscript defines the layer number.
The ensemble of perceptrons in a layer with their
respective weights are illustrated in Fig. 13.

4.2.1 Activation Layers

While a collection of the basic linear layers described
this far is quite versatile, further flexibility and non-
linear behaviour should be added by the use of ac-
tivation layers. An activation layer is made up of
a single differentiable function used on a hidden
state. The activation functions with relevance to
this project are shown in Fig. 14 and given as:

• RELU: Casts negative values to zero:

RELU(x) =

{
x, x > 0

0, x ≤ 0
(4)

• Leaky RELU: Has a small gradient (α > 0)
for x ≤ 0:

lRELU(x) =

{
x, x > 0

αx, x ≤ 0
(5)

• GELU: allows nodes to relay slightly nega-
tive numbers, while mimicking RELU.4

GELU(x) = x · 1
2

[
1 + er f

(
x/
√

2
)]

• Hyperbolic tangent: Used to smoothly limit
values (−1, 1).

• Sigmoid: used to smoothly limit values in
(0, 1), which is especially useful for classifi-
cation tasks.

S(x) =
1

1 + e−x (6)

4As the Gaussian error function erf is computationally ex-
pensive most implementations use an approximated version
[28].

Figure 14: Overview over activation functions.

• Lastly, SoftMax was also used, which is dif-
ferent from the rest in that it does not take
a single input but a collection of inputs, and
normalizes them according to the Boltzmann
Distribution of negative input:

So f tMax(xi, {xn}) =
exi

∑N
n exn

(7)

4.3 Learning

The goal of training an NN is to fit values for the
weight matrix W and the biases b throughout the
network so the output yreco best approximates some
target value ytrue. For this reason W and b are
referred to as the learnable parameters of the net-
work, θ.

Describing the NN as a function, we represent it in
the following way:

f (x, θ) = yreco (8)

For the training we now define a loss function,L(ytrue, yreco),
which is defined such that a lower value of L is
obtained if the prediction of yreco is closer to ytruth.
One such loss function can be a sum of squared er-
rors, which would be calculated as: L = (ytrue −
yreco)T(ytrue − yreco) and would be 0 for a perfect
prediction.

The goal is now to fit θ such that L is minimized
over all data points in the training sample:

θ̃ = argminθ ∑
data
L( f (x, θ), y) (9)
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4.3.1 Backpropagation

As all of our implemented algorithms are of the
feed-forward kind, they learn by utilizing back-
propagation. This term encapsulates computing
the gradients of the weights with respect to a spe-
cific loss function L(ytrue, yreco) such that they can
be used for gradient descent.

Considering the gradients only, the path through
a model can be seen as simply consisting of re-
peated and alternating matrix multiplication and
non-linear activation functions. For the weight ma-
trix of layer i W i and activation function φ a predic-
tion yreco = f (x) is calculated as:

f (x) = φN
(

WNφN−1
(

WN−1 · · · φ1
(

W1x
)
· · ·
))

The loss is then calculated as L(y, f (x)). As all
layers are nested, the derivative of the individual
layer weights Wns can be calculated by the chain
rule.

This formulation grants us the ability to recursively
find the component of the gradient. Thus, given
an input/output pair, starting from the final layer,
backpropagation is used to calculate the gradient
terms for every layer. The weight of each layer is
then updated by the optimizer using the gradients
and a factor called the learning rate, which will be
further explained in the next section.

4.3.2 Optimizing

As previously mentioned, minimizing the loss func-
tion is key. But since the loss landscape is highly
non-convex, finding an optimal spot is non-trivial
as saddle points and local extrema can be confused
for global minima. The work is done via stochastic
gradient descent and the algorithm used is called
an optimizer.

Our choice of optimizer is called Adam. Adam
has an adaptive step size and is therefore (along
with RMSprop and AdaGrad) one of the most ver-
satile algorithms at finding minima [29]. Adam
has a number of hyper-parameters that can change
how the gradient descent plays out, learning rate
being the most important. Learning rate is tun-
able for most optimizers and corresponds to the
’step size’ of the algorithm for each application of
the gradients. Typical values lie on the order of

0.001; higher learning rates can result in quicker
descent while lower values can help find minima
that might otherwise be skipped. As this parame-
ter is vital to the speed and success of the optimiza-
tion, learning rate-finders are used. These work by
running a number of epochs at different learning
rates, keeping track of the change in loss, and ul-
timately finding the sweet spot between diverging
and stagnating.

Even though Adam has an adaptive step size a
learning rate-finder can help find an initial value,
some literature suggests that changing the learn-
ing rate during training can improve the conver-
gence of the optimizer [30]. This is called schedul-
ing and is most commonly an exponential decay or
a linear rise followed by a descent called one-cycle.

As Adam nears a minimum and internally low-
ers its step size, the change in loss might come
from the model learning the individual quirks of
the specific dataset instead of the general features
of the data. This problem is called overfitting and is
very common. Here early-stopping can be applied,
somewhat negating the problem by cross referenc-
ing the loss with a calculated loss for a set of ”val-
idation data” the model has not been trained on.
If the validation loss has not seen an improvement
for a set number of epochs, the training is stopped.

4.3.3 Regularization and Dropout

To combat overfitting of a model one could also
add regularization to a model. During regulariza-
tion, a term dependent on the size of the weights
is added to the loss function. In the simplest cases,
this is done by the L1 penalty: λ ∑i |wi|, where λ

is a hyper-parameter. If the weights have no effect
on the primary loss function they will have an op-
timal value of 0, and we can thus limit the practical
number of weights used throughout the network.
Another commonly used regularizing term is the
L2-penalty: ∑i w2

i . One could interpret this penalty
term as a prior of a Gaussian weight distribution in
a Bayesian interpretation [31].

Furthermore, one could introduce randomness into
the model by using dropout layers. Dropout is in-
spired from bagging, where multiple smaller mod-
els are trained on subsets of the data, avoiding over-
fitting on the entire dataset. Dropout approximates
this process by generating a random binary mask
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for each layer, only allowing some hidden states
to pass to the next layer. Effectively, this creates a
subset of the model and performs a back-propagation
which will train only this specific subset. In the
next iteration the dropout layers will be randomly
generated again and another subset will be improved.
Thus, when looping over the data a different sub-
set of the model will see the same data each time,
limiting the ability for the model to overfit to the
training data [31].

4.3.4 Batch Normalization

In deep NNs, multiple layers are computed sequen-
tially. The values of the hidden states can some-
times take on values in vastly different domains,
which, especially in later layers, can increase the
training time needed to reach a loss minimum. To
reduce this effect, Batch Normalization is introduced
as an attempt to limit the way that earlier layers
impact the general order of magnitude of the weights
and biases for later layers. The idea of batch nor-
malization is to normalize the input between each
layer so that the input to the next layer will have
mean, µ = 0 and variance, σ2 = 1 [32].

Batch normalization works differently when train-
ing than when predicting. During training, ev-
ery batch of inputs is normalized according to the
mean and variance by:

x̂ =
x−mean(x)√

Var(x) + ε
(10)

where ε is a small numerical fudge factor ensur-
ing stability. Furthermore, the mean and variance
used for predicting is learned by having a mov-
ing mean and variance estimate during training.
Which after each training step updates according
to:

µt+1 = mµt + (1−m) ·mean(x) (11)

σ2
t+1 = mσ2

t + (1−m) ·Var(x) (12)

where m is a momentum term between 0 and 1.5

The predictions are then made with:

x̂ =
x− µ f inal√

σ2
f inal + ε

(13)

5m is typically around 0.99 [33]

4.3.5 Basic Loss Functions

Since minimization of the loss function is the ul-
timate goal of training, the choice of loss is very
decisive of the way the network will work. There
are many types of loss functions, some more use-
ful than others, but essentially any differentiable
function can be used. In this section, some of the
most common loss functions will be outlined.

When performing regression, the end goal is to min-
imize the difference between reconstructed vari-
ables and the truth. This motivates the use of sim-
ple differences as loss function and the Mean Abso-
lute Error defined as:

MAE(ytrue, yreco) =
1
N

N

∑
i
|yi,true − yi,reco|

where the difference between reconstruction and
truth is punished linearly. Different priorities can
lead to other forms of this loss function. Mean Squared
Error is also very common. This is defined by:

MSE(ytrue, yreco) =
1
N

N

∑
i
(yi,true − yi,reco)

2 (14)

Using this error, outliers contribute significantly to
the loss.

In classification, another kind of loss should be used.
The Cross Entropy (CE) is a measure of distance be-
tween two probability distributions in information
bits. For multiple classes, the binary cross-entropy
H(pc, qc) = pc log(qc) + (1− pc) log(1− qc) can be
used, where pc ∈ 0, 1 is the truth variable for class
c and qc is the predicted probability. The multiclass
Cross Entropy is then:

CE(ytruth, yreco) = −
1
N

N

∑
i

C

∑
c

pc log(qc)

Since pc = 0 or pc = 1 only one term will be
nonzero for each class, and both terms will go to
0 only if the prediction is perfect, while going to ∞
for a completely wrong classification [34].

4.3.6 Probabilistic Loss

Since the information available in each event is lim-
ited, predictions will generally not be exact.From
the first measurements of data to the final recon-
struction, small errors and approximations are ac-
cumulated. This leads to the actual uncertainties
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on a prediction being unknown, which motivates
the use of a probabilistic loss function. In addition
to making a prediction of the target, the NN also
predicts its own uncertainty.

The probabilistic loss is heavily inspired by the max-
imum likelihood fit as described in reference [34].
Considering an event of target variables, ytrue, there
is some probability of observing the data X, given
by p(X|ytrue)6. But since the goal is to determine
p(ytrue|X) we use Bayes’ formula to write:

p(ytrue|X) =
p(ytrue)

p(X)
p(X|ytrue) (15)

where the probability of seeing the event p(ytrue)

and for seeing the data p(X) effectively serve as a
normalization constant. The goal is now given X
to produce a proper distribution for the target vari-
able y. This is done by using the UAT and trying
to approximate the right hand side of Eq. 15 as an
NN model, giving us:

p(ytrue|X) ≈ f (ytrue, X, θ) (16)

Where θ represents the trainable parameters of the
NN. When it is time to tune the network it is done
by fitting a maximum likelihood. Here it is as-
sumed that the different events are independent,
such that the probability of getting a set of y val-
ues will be:

L = ∏
i

p(yi|Xi) ≈∏
i

f (yi, Xi, θ) (17)

With a set of {(Xi, yi)} it is now the goal to choose
θ such that L is maximized. Since a product of
many probabilities easily vanish when any one of
them nears 0, the logarithm is taken:

log(L) = ∑
i

log( f (yi, Xi, θ)) (18)

And with the goal of finding argmaxθ log(L), the
similarity with a loss function motivates the choice
to define the probabilistic loss as:

L = −∑
i

log( f (yi, Xi, θ)) (19)

where the sign is introduced, such that minimizing
the loss maximizes the likelihood.

6The notation p(A|B) reads as the probability of A given B

Normal Distributed Regression Assuming that
the probability density function of a truth variable
given the data is normally distributed:

p(yi|µi, σi) =
1√

2πσi
exp

(
− (yi − µi)

2

2σ2
i

)
(20)

It is necessary to predict the two variables, µ and σ

given some data X. This is done by creating an NN
that has two outputs: (µi, σi) and then minimizing
the loss given by:

L =
(yi − µi)

2

2σ2
i

+ log σi + const (21)

Introducing κ = 1/σ2, the more numerically stable
version is:

L =
κi

2
(yi − µi)

2 − 1
2

log κi + const (22)

This notion can be extended to multivariate dis-
tributions where the prediction of covariances be-
come possibly. If instead the covariance matrix is
assumed to be diagonal, this simplifies to taking
the product of individual Gaussians.

Spherical Likelihood Regression However, di-
rectional statistics do not naturally take place in
Cartesian space but on the surfaces of N-dimensional
unit hyperspheres. Here, instead of minimizing
based on direct differences between prediction and
truth, one minimizes based on the subtended an-
gle Ω between two points on the hypersphere.

The 3-dimensional von Mises-Fisher distribution
is a close approximation to the normal distribution
on the 3-dimensional sphere:

vMF(xxx|µµµ, κ) =
κ

4πsinh(κ)
eκµµµTxxx (23)

µµµ and xxx are unit vectors and κ is the concentration
parameter.7

In spherical coordinates the cosine of the angle be-
tween the unit vectors is:

µµµTxxx = cos(Ω) =sin(θµ)cos(φµ)sin(θx)cos(φx)

+sin(θµ)sin(φµ)sin(θx)sin(φx)

+cos(θµ)cos(θx)

7For small κ, vMF is approximately uniform while for
large κ ≈ 1

2σ2
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In general, for directional probability distributions,
the angular standard deviation is given by [35]:

σ =
√
−2ln (E[cos(Ω)]) (24)

For the 3-dimensional vMF :

EvMF[cos(Ω)] = 2π
∫ π

0
cos(Ω)

κ

4πsinh(κ)
eκcos(Ω)dΩ

= coth(κ)− 1
κ

Notes on numerical implementation can be found
in 12.1.1.

Since the network cannot learn azimuth and zenith
separately, when using −ln(vMF(xxx|µµµ, κ)) as the
loss function,8 it can be hard to make specified
progress on either the zenith or azimuthal angle.
For neutrinos, the azimuthal angle is harder to regress,
so if instead only a prediction for the zenith angle
is wanted, the following becomes useful.

Polar Likelihood Regression The von Mises-Fisher
distribution for the 2-dimensional case is a close
approximation to the wrapped normal distribution,
and is therefore also known as the circular normal
distribution:

CN (xxx|µµµ, κ) =
eκµµµTxxx

2π I0(κ)

where µµµTxxx = cos(Ω) is just the cosine of the angle
difference of the angle in question and I0(κ) is the
modified Bessel function of order 0.

The standard deviation is then given by

σ =

√
−2ln

(
I1(κ)

I0(κ)

)
.9

A few notes on its numerical implementation can
be found in the appendix section 12.1.2

Spherical Likelihood as Two Polar Likelihoods
If instead a simultaneous probabilistic prediction
of both the azimuth and the zenith angle is wanted,
a second option, as opposed to using the vMF, is
to treat the two angles independently and multi-
ply their individual probabilities, which is then the

8Since they are combined into a single scalar
9Since ECN [cos(Ω)] = I1(κ)

I0(κ)

likelihood to be maximized. More concretely, this
second option consists of multiplying the circular
normal distribution for the azimuth angle with the
circular normal distribution for the zenith angle.

P(φx, θx|φµ, θµ, κφ, κθ) = CN (φx|φµ, κφ)CN (θx|θµ, κθ)

=
eκφcos(φx−φµ)

2π I0(κφ)

eκθcos(θx−|θµ|)

2π I0(κθ)

This yields a separation of the angles, which al-
lows the network to learn them separately. Fur-
thermore, it also provides an uncertainty on the
zenith and azimuth predictions themselves instead
of the subtended angle. A comparison of the dif-
ferent loss functions for directional regression can
be found in Sec. 7.4.

4.3.7 Adding Distribution Constraints

Since the above loss functions consider each event
individually, they may optimize for individual events
and not approach the general distribution of the
target variable correctly. One can attempt to cor-
rect this in several ways, but not without some loss
in precision. One way of doing this is to add a
loss based on simple distribution statistics like the
mean and standard deviation, and adding loss if
the predicted distribution does not match these.
If instead, one desires to correct the distribution
more particularly, differentiability and thus back-
propagation quickly becomes an issue, as e.g. the
difference between two histograms would not be
a differentiable metric. Another option is to cor-
rect the distribution using a kernel density esti-
mate (KDE) of the true distribution, and taking the
L1 norm between the true and predicted distribu-
tions as an added loss term. A KDE works by tak-
ing the sum of differentiable probability density
functions (e.g. Gaussians), letting the mean of any
PDF correspond to a single data point.10 As one
gets more data, this approaches the true distribu-
tion of the variable in question while maintaining
differentiablility.

10Choosing σ of the Gaussian is more subjective, but unim-
portant for large datasets.
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4.3.8 Performance Metrics

When models are trained with different loss func-
tions, the loss itself cannot immediately be used
to determine which model is better. It is therefore
necessary to define some performance metrics that
indicate how well a model works, independently
of the loss. Here we focus on metrics indicating
median absolute deviation, bias, and spread.

For energy predictions (log10(E)) the main inter-
est is the absolute residuals. The bias can be esti-
mated by the mean of the residuals:

1
N

N

∑
i
(yi,reco − yi,true) (25)

or one could use the median to reduce the impor-
tance of outliers. To estimate the variance of the
residuals, one could calculate the standard devi-
ation of the residuals. However, as the distribu-
tion is not necessarily Gaussian, the inter quartile
range (IQR) can be used as an estimate which is
also more robust to outliers. The IQR is the differ-
ence between the 3rd and 1st quartile. Here we use

w =
IQR(yreco − ytrue)

1.349
(26)

where w would be equal to the standard deviation
if the residual distribution were a Gaussian distri-
bution.

For direction predictions, a few metrics are use-
ful. Firstly, both the zenith and the azimuthal an-
gle can be predicted and the residuals here can be
treated like the energy. To account for the period-
icy of the angles one could compute the residuals
by sin−1(sin(A− B)).

Furthermore, a useful metric is angular difference.
With unit vectors, this is found by cos(Ω) =~a ·~b.11

In this project, for all angular metrics, we focus
on the describing the magnitude of the residuals.
To capture the distributions well, the 16th, 50th
and 68th percentile of the absolute residuals are re-
ported. The median (50th percentile) is chosen as
a robust metric to indicate the general size of the
residual, while the 16th is chosen as an estimate of
”median - 1 σ”.12 The 68th percentile is chosen to
compare with previous work [25].

11For spherical coordinates see Spherical Likelihood Re-
gression in Sec. 4.3.6

12Since one σ should encapsulate 68% of a distribution, ≈
34% lay below the median

For classification tasks, the accuracy can easily be
calculated as the fraction of predictions where the
prediction is equal to a given target label. How-
ever, this does not account for unbalanced popu-
lations where the most commonly occurring class
could dominate the accuracy. Furthermore, the pre-
diction is usually a probability between 0 and 1
instead of exactly 0 or 1, so a threshold needs to
be chosen. The Receiver Operator Characteristic
(ROC) curve takes both of these facets into account.
In a ROC-curve the true positive rate (TPR) and
negative positive rate (NPR) are calculated based
on the probability distributions for a given thresh-
old. This is done for an appropriate number of
thresholds and the ROC curve is then tradition-
ally visualized as the TPR as a function of FPR.
A perfect classification would thus go towards the
upper-left corner, and a random classifier will lie
along the diagonal. The area of the ROC curve
(AUC) is now a measure of how well the model
classifies the sample, with AUC = 1 being perfect
and AUC = 0.5 being random.
For an example of how the ROC-curve and AUC
is used see Fig. 23.

4.4 Graph Neural Networks

Here we introduce the concept of graphs, and the
specific frameworks used for learning on them. We
will focus on the methods most relevant to the work
of the group.

4.4.1 Why Graphs?

In recent years, Graph Neural Networks (GNN) have
lent themselves to the realm of physics, as the fo-
cus on nodes and their mutual relationships ap-
pear to constitute a representative manifestation of
the real world [36].

Many types of NNs have focused on unvarying
grids (like pixels in an image or letters in a sen-
tence), but most struggle with irregular relation-
ships between data points. Especially since Ice-
Cube is built from many individual sensors with
internal differences, placed in a very peculiar struc-
ture, the choice of the much more flexible graph
framework seems obvious.
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Figure 15: Three simple graphs with their respective
adjacency matrices. (Image source: [39])

4.4.2 Graphs

A graph is made up of nodes which are connected
by edges. A graph has N nodes with features given
by the vector x0...xF which is connected by edges
which can also have features. In the
Tensorflow Spektral and PyTorch Geometric no-
tation ([37],[38]), we encode the information for a
single graph in the following way:

• Let N, F, G be scalars referring to the num-
ber of nodes (N), number of features for each
node (F), and number of features for each
edge (G).

• Let X be a N × F matrix containing the fea-
tures of the nodes.

• Let A be the adjacency matrix with N × N
entries. The adjacency matrix is defined by
Aij = 1 if node i is connected to node j, and
0 otherwise. In general A is symmetrical, but
it is possible to make a directed graph, where
Aij 6= Aji. For a graph without self-loops, the
adjacency matrix must have 0’s on the diago-
nal. The adjacency matrix is most commonly
treated as a sparse matrix, where the infor-
mation is boiled down to a 2× Nedges index
matrix and a vector of the values for each
entry - all other entries are expected to be 0.
An example of simple graphs with their ad-
jacency matrices can be seen in Fig. 15.

• Let E be an Nedges × G matrix containing the
edge features.

4.4.3 Aggregation and Pooling

The GNN-framework allows for variable size in-
put, i.e. a model can be independent of how many
nodes are in any given graph. If only a predic-
tion for each node is wanted13, it is straightfor-
ward since the mapping consists of: f : RF →
RNtargets , however if a prediction for the whole graph
is wanted, the mapping becomes: f : RN×F →
RNtargets leading to complications since N can vary
for each input. This is dealt with through aggre-
gation and pooling. The two terms cover the same
idea i.e. taking a set and returning a single ele-
ment. In this project, for the sake of clarity, aggre-
gation is used to denote combining said elements,
whereas pooling is used for ”boiling down” the
collection into its most important parts. A weighted
sum is an example of aggregation: Agg(mn) =

∑N
n αnmn. An example of pooling could be find-

ing the mean, variance, minimum, or maximum of
the set. It should be noted that any method gen-
erally needs to be permutation invariant since the
graph structure usually does not offer any hierar-
chical structure.

There are a few more complicated methods of pool-
ing and aggregation that could be used to extract
other information from the graphs. These include
top-k/DiffPool 14 and attention based aggregation.
A simple attention based aggregation used in this
project is a weighted sum pool(hi) = ∑N

i αihi where
the scalar attentions, αi, are calculated from the
hidden states. The attentions are normalized by
SoftMax.

4.4.4 Message Passing

To create a convolution on a graph, several differ-
ent approaches can be taken. In the graph litera-
ture, a node which is connected to another node is
called a neighbour. A set of these are thus a neigh-
bourhood (not to be confused with the k nearest
neighbours algorithm). One very general approach
of a graph convolution is to build a layer that sends
a message from every node to all its neighbours
and updates the nodes according to the incoming
messages. This is the idea behind the very general

13In the graph literature this is called a node-level predic-
tions

14which reduces the size of the graph to k nodes or by a
fraction
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Message Passing (MP) layer [40].

An MP layer is composed of a message function,
an aggregation function, and an update function.
Given hidden states of a node ~ht

i and the edge fea-
tures eij between the node and its neighbours, a
message is calculated according to

mt+1
ij = Mt(~ht

i ,
~ht

j, ~eij) (27)

where Mt is an arbitrary differentiable function (most
typically an MLP). Now the messages are aggre-
gated by a function that takes multiple messages
and returns a single instance:

mt+1
i = Agg({mij}), j ∈ N(i) (28)

where N(i) is the set of neighbouring nodes to i
and Agg is the permutation invariant aggregation
function. Lastly, an update function is applied ac-
cording to:

ht+1
i = Ut(hi, mt+1

i ) (29)

where the update function, like the message func-
tion, can be anything that takes a hidden state and
returns another.

4.4.5 Convolutions

While MP is a very general layer, a few specific lay-
ers from literature were used in this project, some
based on convolutions. Here these layers will be
described.

The basic Graph Convolutional Layer, GCN is in-
spired by convolution layers in image recognition,
but instead of using neighbouring pixels, the neigh-
bouring nodes are used [41], [37]. Its internal cal-
culations can be defined as:

X′ = AXW + b (30)

Where A is the adjacency matrix, X denotes the at-
tributes of the nodes, W is the weight matrix, and
b is the bias. This isn’t directly used in the project
but serves as a baseline for more advanced layers.

Another such layer is GraphSAGE, 15 where the
central idea is to aggregate the neighbourhood of
a node and then apply a linear layer to encode

15In this section the implementation from Spektral [37]
which differs slightly from the original idea presented in [42]

the information of the neighbourhood. Mathemat-
ically we describe the process of updating the hid-
den state of node i at time t from ht

i to ht+1
i as first

calculating an aggregated neighbourhood vector:

ht
N(i) = Agg({hj|j ∈ N(i)}) (31)

now the aggregation is concatenated with the node
features and a linear layer is applied. So that the
next layer can be calculated by:

ht+1
i = (ht

i ‖ ht
N(i))W + b (32)

where W and b are trainable parameters. Now, by
applying the GraphSAGE layer multiple times, a
bigger neighbourhood can be considered for up-
dating a single point [42].

GATConv implements a technique known as at-
tention. Attempting to mimic the awareness of con-
scious animals, attention-layers has in recent years
proved to be more precise and versatile than tradi-
tional methods [43].

The layer works as a standard convolutional layer
(GCN), but uses the attention mechanism to weight
the adjacency matrix [44]:

X′ = (ααα ∗A)XW + b (33)

Where ∗ is the Hadamard product16 and ααα is the
attention matrix, which is usually calculated as a
normalized response to the inputs. Each attention
trainable vector aaa is called an attention head: 17

αi,j = SoftMax
(

LRELU
(

aT(XW)i||(XW)j

))
(34)

ECCConv implements edge-conditioned convolu-
tions. The idea is to utilize message passing with
a dynamic set of weights computed based on the
edge-features:

x′i = xiWroot + ∑
j∈N (i)

xj MLP
(
ej→i

)
+ b (35)

where Wroot is the base weight matrix and MLP
is a multi-layer perceptron that outputs an edge-
specific weight as a function of edge attributes [45].

16Element-wise matrix multiplication: (A ∗ B)ij = AijBij
17There can be multiple heads that ”vote” on the final at-

tention
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4.5 Custom Layer Implementations

Since the Message-Pass (MP) layer is a general frame-
work, the group implemented our own ideas in a
few different ways in this project.

General MP layer is built by having two MLPs
and an aggregator. First messages are computed
by an MLP taking mij = MLP(xi, xj, eij) as input.
For each node the messages are now aggregated
by calculating some statics over the incoming mes-
sages, such that the: minimum, maximum, mean,
and variance are calculated and concatenated. Now
another MLP is taking the aggregated features and
updating the node.

The KHop MP layer is inspired by the Simple Graph
Convolution (SGConv) operator proposed in [46],
which attempts to maintain the simplicity of the
basic MP layer, while also extending the neigh-
bourhood size for each node. This is done by spec-
ifying the K-neighbours each node should aggre-
gate information from, i.e. giving K=2 would mean
that one’s neighbourhood would take in informa-
tion for the 2-hop neighbourhood, while K=[1,2]
would mean that each node would receive and ag-
gregate information from its 1-hop neighbours first
and then relay that information in another encoded
message to the the 2-hop neighbourhood.

The motivation behind GRUConv is that, by uti-
lizing the ”message-pass” analogy, one could in-
stead consider a ”conversation” between neighbours
where, instead of one-directional information shar-
ing, one could implement a call and response method.
The idea is, that instead of two simultaneous one-
way message-passes, the second message pass is
modified based on the original message and the
updated node. A memory unit is thus needed and
for this; the Gated Recurrent Unit (GRU) - cell is
used. The GRU takes as input a feature vector x
and a contemporary hidden vector h and updates
the hidden state via the following:

r = σ (Wirx + bir + Whrh + bhr)

z = σ (Wizx + biz + Whzh + bhz)

n = tanh (Winx + bin + r ∗ (Whnh + bhn))

h′ = (1− z) ∗ n + z ∗ h

(36)

where σ is the sigmoid function. h then plays the
role of the message to be passed with x the sender
of the message. h′ is then the new message calcu-
lated based on the receivers updated features and
the original message h. However, in this project,

GRUConv was only used on graphs with an adja-
cency matrix where only one of the rows had en-
tries different from 0. Thereby a single node, called
the global node, was responsible for all the com-
munication between nodes. The resulting convo-
lution, denoted Global GRUConv is then:

h′i = GRU(xt
i ||gt, ht

i)

gt+1 = Ug(gt, A({h′i|∀i}))
ht+1

i = GRU(xi||gt+1, h′i)
xt+1

i = Ux(xt
i , ht+1

i )

(37)

Where U is an update function, A is an aggrega-
tion function, and g denotes the features of the global
node.

4.6 Explainability

Due to the large amount of parameters with com-
plex relationships in any NN, explaining exactly
how a given set of observations is turned into a
prediction becomes highly non-trivial. NNs are in-
credible at finding correlations, but are these cor-
relations meaningful?

NN explainability is a highly active research area,
and there is not yet any single method that domi-
nates the area. Symbolic regression, SHAP (SHap-
ley Additive exPlanations), and gradient analysis
are all possible methods of doing so. Here we fo-
cus on SHAP and gradient analysis.

4.6.1 SHAP

SHAP values are built on the game theoretical con-
cept of Shapley values [47] [48]. The core idea is
to determine the reward a game-actor should re-
ceive according to their contribution, given that
contributions are judged fairly. It is calculated for
each feature (actor) i by prediction with a model f
(playing the game) using the feature space S with-
out i and a feature space S ∪ {i} which includes
the feature i. The Shapley value is now calculated
by a weighted sum of the contributions of i.

∑
S⊆F\{i}

|S|!(|F| − |S| − 1)!
|F|!

(
fS∪{i}(xS∪{i})− fS(xS)

)
(38)

Where the sum is over all subsets that do not in-
clude the parameter i. In the actual implementa-
tions, several assumptions and approximations are
made, since evaluating Eq. 38 requires a factorial
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amount of terms. Some approaches approximate
even further, allowing for creation of a larger sta-
tistical sample ([49], [50]).

4.6.2 Gradient Analysis

Another approach, facilitated by the necessity of
the use of gradients used in back-propagation (Sec.
4.3.1), is to analyse the gradients of the outputs
with respect to some input. This is a much less
computationally expensive approach, facilitating
analysis of a larger amount of events.

Direct Gradient Analysis. This method is known
as saliency mapping in computer vision [51]. Here
one simply maps ∂i

∂xj
, but this method suffers from

a series of drawbacks. First of all, it is unclear
how one can compare gradients that have differ-
ent units, i.e. the gradient of logarithmic energy
with respect to charge is not comparable to the gra-
dient of the zenith with respect to position. Fur-
thermore, the general size of the gradients can dif-
fer between both parameters, as well as between
events of different size.

Integrated Gradients. This method, developed in
[52], builds upon the same idea, but tries to cap-
ture the fact that decision boundaries may have
happened before reaching the current value of a
given parameter. Thus this approach opts for ap-
proximating the path integral of the gradient from
some baseline x′i (often 0’s for all parameters) to
the actual input, i.e. the integrated gradient for
output yj with respect to variable xi for the neu-
ral network denoted F. The distance integrated
between the baseline and the input is controlled
With the ”perturbation parameter” α, where α = 0
is the baseline and α = 1 is the actual input.

IntGrad(yj(x)) ≡
(
xi − x′i

)
×∫ 1

α=0

∂F (x′ + α× (x− x′))
∂xi

dα

Computationally this is done as a Riemann sum
over m steps. This method works axiomatically
for classification tasks i.e. F : Rn → [0, 1], but
for regression tasks the method is relatively unex-
plored. The main drawback is the choice of base-
line, which is highly subjective.

5 Data

This section serves as an introduction to the data
used in this project. First the main datasets will
be presented. Afterward, an overview of the input
and target variables will be provided and the rela-
tion between them will be demonstrated through
distributions. Lastly, we will present methods for
processing the database format to graphs suitable
as inputs to GNNs.

5.1 Databases

In this project, the focus was on simulated data in
the IceCube experiment. Mainly muons from the
MuonGun-simulation and Neutrinos from the Ge-
nie simulation (both described in Sec. 3.5) were
used. The data was processed and came in two
database files, which we will refer to as MuonGun
and OscNext. The first is a collection of simulated
muons and the latter is a mix of different neutrino
flavours and muons. Table 1 shows the total amount
of events of each particle type as well as the total
dataset size. In this project MuonGun was cleaned
at level 2 and OscNext at level 7 (see Sec. 3.6).

5.1.1 Input Features

The databases each consist of two tables; truth and
features. The features contains all the information
read out by the DOMs, of which the most pertinent
parameters are:

• event no: Which event the DOM activation
belongs to.

• x, y, z: The position of the DOM that made
the readout.

• time: The time of the readout in ns. The trig-
ger time is set to t = 0.

• charge log10: The charge measured in the DOM.

• pulse width: The width of the measured wave-
form. Due to the digital nature of the DOMs
this parameter is either 1 or 8 ns., depending
on the trigger.

• SRTInIcePulse: A Boolean variable correspond-
ing to whether the DOM activation survived
the SRT cleaning. This parameter is only in
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Table 1: Amount of data in the simulated datasets used

(106 events) µ νe ν̄e νµ ν̄µ ντ ν̄τ Total
MuonGun 1.5 0 0 0 0 0 0 1.5
OscNext 0.2 1.3 0.6 3.0 1.4 1.4 0.5 8.3

the MuonGun database since the OscNext
dataset only contained readouts that passed
the cleaning

• rqe: All DOMs are created equal but some
are more equal than others: ”Relative Quan-
tum Efficiency” is the estimated quantum ef-
ficiency of a sensor (OscNext specific).

To see how DOM pulses are distributed in the de-
tector, the density of the x and z coordinates are
displayed in Fig. 16. Most considered events pass
through the DeepCore part of the detector.
In MuonGun data, the veto module can also be
seen around z ≈ 100m to z ≈ 200m, but since
this is specifically made to clean the sample from
muons, these events do not pass the level 7 clean-
ing and are not present in the OscNext sample.

400 200 0 200 400
x [m]

400

200

0

200

400

z [
m

]

x-z Distribution of Pulses in OscNext

400 200 0 200 400
x [m]

x-z Distribution of Pulses in MuonGun

Figure 16: Overview of the pulses’ x-z distribution
showed in 2D histograms.

5.1.2 Target Features

In the truth table, the parameters used for generat-
ing the simulation can be found. For this project
the primary focus was on reconstructing the az-
imuthal and zenith angle along with the energy. The
azimuthal angle is lies in the xy- or equatorial plan
and goes from 0 to 2π. The zenith angle is the po-
lar angle going from 0 to π with 0 being straight
up and the horizon at π/2. The energy is given in
log(E/GeV). The individual distributions and the

pairwise density plots can be seen in Fig. 17. The
energy of the muons is in general much higher,
and they originate from above the horizon while
neutrinos come from the full polar range.

From Fig. 17 it can also be seen that the azimuth
angles are almost uniform. This is expected since
there should be a rotational symmetry around the
z-axis. There are a few peaks (most clearly in the
MuonGun sample) which can be accredited to the
hexagonal structure of the detector layout in the
IceCube Experiment. As can be seen in Fig. 35
in the Appendix, none of the target features share
any notable correlation.

Figure 17: Distributions of the target variables for
muons and neutrinos. As OscNext contains multiple
particles, the dataset has some quirks, like the muon
energy/zenith bumps.

Since the DOMs have a minimum threshold for
measurement, a higher energy is associated with
more readouts and more data for a single event.
For this reason it can often be beneficial to evalu-
ate models in different energy ranges to measure
strengths and weaknesses. In data, this is not pos-
sible, but one could instead use the total amount
of triggered DOMs. In Fig. 18 the energy dis-
tribution and number of pulses distribution that
pass the SRT cleaning is displayed. A clear cor-
relation is seen between the two features, within
each dataset.

5.2 Data Preparation: from Data to Graphs

Before applying the GNN-framework, it is advan-
tageous to perform multiple layers of pre-processing
in order to achieve the best prerequisites for the
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Figure 18: Contour plot of log10(E) and log10(NDOM)

distributions in MuonGun and Oscnext.

machine learning methods.

5.2.1 Scaling

Contrary to, decision trees, the inputs in NNs are
directly used in computing the output. This means
that inputs that are too large or too small infuse
numerical instability into the learning process.

Therefore, it is advantageous to scale the input.
There are multiple ways this can be achieved, where
the most well-known methods include: Min-Max-
scaler, which linearly forces the whole sample to lie
in the range [0,1], and thus suffers in the presence
of outliers. RobustScaler attempts to counter this
by translating by the median and scaling by the
interval spanned by the innermost 50% of the sam-
ple. The Standard-scaler is also useful for data that
is normal-distributed, where the sample is trans-
lated by the mean of the sample and scaled by the
variance. Many other more sophisticated methods
exist, but are not used in this project.

Usually features are scaled independently, how-
ever, in order to keep the symmetry and not dis-
tort distances the x, y and z variables were scaled
by the same factor.

5.2.2 Feature Selection and Creation

Most of the node features used by our group were
taken directly from the databases. These include
positions, trigger time, measured charge and pulse
width.
An additional interesting feature, is the SRTInIcePulse
property, which was only available in the MuonGun
dataset. This is a Boolean variable that refers to
whether or not a specific node ’survived’ SRT-cleaning.
We found that handing the model this information
gave a greater increase in predictive power than
simply removing the noisy nodes (see Sec. 5.1.1).

For this project all prediction tasks were event-wise,
as opposed to e.g. providing a prediction for each
DOM. In the GNN-framework this can be treated
as the creation of a node that carries the global
features of the graph, which are ultimately used
to create the prediction. The applications of the
global node include either creating it in the early
layers and treating it as a part of the adjacency ma-
trix, or simply creating it in the final layers by ag-
gregating the nodes of the graph.

One can also create a set of global features directly
from the input, and not treat it as a node, keeping it
as separate information to be given to a decoding
MLP later. This could be the summary statistics
like the mean, minimum, or variance of a feature
variable across all DOMs.

Apart from the adjacency matrix, the other unique
attribute of graphs is the possibility of using edge
features. Since the adjacency matrix comes in a
sparse matrix with an index matrix of size Nedges×
2, features comparing two nodes can easily be cal-
culated on the fly. With this method, we calculated
a set of edge features consisting of difference in
log charge and time, Euclidean distance between
the nodes, and the normalized vector between them.
Furthermore, we added a Boolean value showing
if the pulses were within the speed of light.

5.3 Graph Creation

As there is no inherent edge structure in IceCube,
an open question is what graph structure to em-
bed. In this project, two different approaches were
ultimately used (though others were attempted, see
for example Sec. 13 in the appendix). One was to
define the adjacency matrix from k nearest neigh-
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Figure 19: Lines show average loss of group with±1σ contours. Doing a sweep of regularization, aggregation method,
dropout and number of neighbours, we observe that an increase in number of neighbours further decreases validation
loss. Each group has 20 runs, with different configurations in the mentioned hyperparameters, implying that the
number of neighbours is consistently an important parameter

bours.18 Here the choice of number of neighbours
was paramount. Another approach was to define
a global node placed in the center of charge, which
is connected to every other node, such as Global
GRUConv defined in Eq. 37. The latter method
had the advantage that it could easily be paral-
lelized on a GPU and thus offers a significant speed-
up and eliminates the need to create edges before
training.

5.4 Hyper-Parameter Sweep

As we sought to find the best model configura-
tion, there was a lot of trial-and-error. Answers to
questions like ”Should I use regularization?” and
”How many neighbours should each point have?”
can be informed by a heuristic educated guess, but
in reality one has to treat model training as an ex-
periment. To find the optimal configuration of pa-
rameters you can do a hyper-parameter sweep, test-
ing out all permutations of possible parameter choices.
This is extremely computationally heavy, since it
requires training ni!nj!...nk! models (where ni is the
number of choices for parameter i and so on).19

The result of such a sweep for the StateFarm archi-

18through Euclidean distance measure between the spatial
coordinates

19Unless more sophisticated search method like Bayesian
optimization are used

tecture training on the OscNext data can be seen
in Fig. 19. All runs are grouped by the number
of neighbours desired when creating the adjacency
matrix, while other parameters are varied. This
shows that the higher number of neighbours con-
sistently improves the models when regressing on
OscNext.

6 Models

In this project, each group member created a GNN
architecture. This section will present the different
approaches to this task. For ease of readability and
comparison, we have kept a consistent color cod-
ing for the different models in both text and plots.
The models presented here are the versions used
for predicting in the OscNext sample.20

6.1 Global GRU Convolution (GGConv)

This model is the result of a pursuit of a graph rep-
resentation for which the adjacency matrix is triv-
ially given, such that no pre-processing of each in-
dividual event is necessary. Ultimately, the choice
was to define a central node placed at the center
of charge and containing the sum, mean, variance,

20Only small modifications are made to the models when
predicting on MuonGun data or performing classifications
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maximum and minimum of the input features across
all nodes in the graph. The connections in the graph
are then only between every input node and this
new central node. The central node is encoded
separately from the other nodes, after which the
convolution takes place. The convolution is done
with Global GRUConv as described in Eq. 37.
The nodes all send a message to the central node
which are aggregated with attentions and the cen-
tral node is updated. A message for each node
is then constructed based on the original message
and the updated central node, with which each
node is updated. Every iteration of the central node
is ’saved’ and concatenated together, from the be-
ginning to the last update, along with a pooling of
the last node representations. A single decoder is
then used to turn this into the wanted prediction.
For a model diagram, see the Appendix Fig. 34.

6.2 Extended Neighbourhoods (StateFarm)

The idea behind this model is to extend the neigh-
bourhood of each node as much as possible while
avoiding over-smoothing, using the KHop MP de-
scribed above. The adjacency matrix is created by
a kNN algorithm. The model uses a mixture of
KHop and GraphSAGE layers for the graph en-
coding, focusing on reaching the 2-hop neighbour-
hood in an optimal way. The graph encoding is
pooled with max/min/mean-pool and combined
with extracted global graph statistics, and decoded
by two densely-connected MLP layers
(Tensorflow Dense layers), and then fed to three
separate decoder heads that decode log(E), (θ, φ)
and (κθ , κφ). A schematic of the model architecture
can be seen in Fig. 20.

6.3 Stepwise Message Encoding (AntHill)

In this model, the adjacency matrix is found by us-
ing the kNN implementation. The inputs are then
aggregated using min, max, mean, and a sum of
each feature and stored for later. Now two Gen-
eral MP layers are applied. The updated nodes are
again pooled. Hereafter, two GraphSAGE layers
are applied and the graph is pooled one last time.
The output from the three pools are now concate-
nated and sent through a wide MLP with two lay-
ers and afterwards split up into a smaller MLP for
each output variable. This model has primarily

been used to predict directional unit vectors. An
illustration of the model can be found in the ap-
pendix in Fig. 33.

6.4 Attention-based GCN (LifeGuard)

As an attempt to focus on attention, poolings, and
a minimal model-size, the idea of LifeGuard was
conceived. First, edge features are calculated and
stored. The graphs are then encoded by virtue of
three message-passing layers with max, min, and
mean aggregation respectively. To further convolve
the edge features an ECCConv-layer is applied af-
ter which the individual batches are normalized.
For a final encoding, the graphs are sent through
two GraphSAGE layers and a single head atten-
tion layer. Between each of these last three layers,
a pooling is made - all of which are concatenated.
This group of poolings is sent to a three layer deep
decoder made of simple Dense layers. Each out-
put (energy, angles, uncertainties) is then routed to
a separate smaller Dense decoder before the final
predictions are made. A schematic of the architec-
ture can be seen in Fig. 32 in the Appendix.

6.5 Ensemble Models

While the UAT states that a sufficiently wide and
deep NN can approach the information limit, local
minima in the loss function means this is unlikely.
Ensemble models can help mitigate the complica-
tions of any single model, as is seen in the popular
boosting used in decision tree forests. The theory
is that if any single model has a certain chance of
getting the right answer, by combining more mod-
els the resulting ensemble will be better than any
of the individual models.

Much like having multiple people in a jury increases
their ability to make an informed decision21, train-
ing multiple independent models will bring their
product closer to the truth. The main drawback
(apart from the time used training and building
multiple models) is that their predictions are rarely
independent, making the ensemble inefficient [54].

Since the models proposed in this thesis are of dif-
fering architectures, they have different strengths
and weaknesses. Therefore, we propose an ensem-
ble model architecture that takes the output from

21Often called the Jury Theorem [53]
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Figure 20: Illustrated StateFarm architecture. All connections are shown, as well as the global aggregated statistics
passed around the graph encoder and directly to the decoder.

each model combined with a particle classifier and
returns a set of predictions for energy log10, zenith
and azimuth. The ensemble consists of a simple
MLP framework with three layers using dropout
and batch normalization between them. This is
further decoded by a thinner, two-layer MLP for
each output variable.

7 Results and Analysis

In this section, the usefulness and performance of
the models described in Sec. 6 is evaluated. Firstly,
the results on the OscNext dataset, which contains
neutrinos, will be evaluated, since this is the pri-
mary interest of the IceCube experiment. Secondly,
the usefulness of GNNs for muons will be investi-
gated. Primarily, the focus will be on regression of
energy and directional parameters. Secondly, on
the ability to get a clean sample of stopped muons,
and lastly on distinguishing between particle types.
Furthermore, it is considered how one could use
this method to calibrate the experiment trying to
see the effect from the moon on atmospheric muons
detected by IceCube and reconstructed by GNNs.

7.1 Neutrino Reconstructions

The main focus of the IceCube experiment is to
measure neutrino oscillations. Thus the important

parameters for reconstruction are zenith, energy,
and particle classification (see Fig. 2). Further-
more, if IceCube were to be a cosmic event alert
system, the best possible angle reconstruction, i.e.
including azimuth, is important.

7.1.1 Angle and Energy

The models were trained on the OscNext sample
with a common train/test split of 80%/20% with
target variables consisting of energy, zenith, and
azimuth angle. To make the comparison between
the models fair, all models were allowed to train
for 20 epochs (training on around 132 million events),
however further training would improve the scores
of the GNNs.22 A summary of the performance
statistics is given in Tab. 2 and the energy depen-
dent performance is displayed in Fig. 21.

In Fig. 21 the performance metrics are shown as
a function of energy. All tested models as well
as Retro perform better on angle predictions for
higher energies up until≈ 100 GeV where the dataset
contains significantly fewer events.

The interactions in the detector differ between neu-
tral and charged current as well as between differ-
ent neutrino flavours. To measure if this had an
effect on the accuracy of the GNN-architectures,

22Training Statefarm for an additional 30 epochs increased
median accuracy by about 6% across all target variables
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Table 2: Comparison of the performance metrics for the four models and Retro. The θ, φ and Ω are given as the
median of the angular difference while the log10(E) is given as the width of the residuals. The speed is the average
inference speed measured on an Nvidia Geforce GTX 3090. LifeGuard does not converge on azimuth angle and is
for this reason left blank. The last row shows the average uncertainty for the column, calculated as in [25]. See Fig.
24 for a predicted uncertainty dependent performance plot. The entries in Loss (Angle) use the shorthand defined
in Sec. 7.4

Loss (θ, φ/x, y, z) Loss (log(E)) θ φ Ω log(E) Speed Params (103)
StateFarm 2xPvM MAE 12.92 ◦ 31.42 ◦ 34.36 ◦ 0.2082 9 · 103 643
GGConv vG Normal 15.94 ◦ 29.65 ◦ 32.84 ◦ 0.2105 3 ·104 176
AntHill 2xPvM/SvM Normal 14.20 ◦ 33.53 ◦ 36.37 ◦ 0.2357 1 · 104 2,218
LifeGuard 2xPvM+σ MAE 15.91◦ - - 0.2634 2 · 104 2.2
Retro - - 15.00 ◦ 37.93 ◦ 40.56 ◦ 0.2390 O(10−2) -
σ - - 0.01 ◦ 0.05 ◦ 0.04 ◦ 0.0003 - -
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Figure 21: Overview of the performance of the architectures described in Sec. 6 as a function of log(E/GeV). The
used metrics can be found in Sec. 4.3.8. In general, a GNN model outperforms Retro in every energy range, for
every metric. A similar plot for muon performance can be found in the Appendix, Fig. 36.
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StateFarm was evaluated with different subsets of
the dataset, split into charged/neutral current as
well as the different particle types seen in the ex-
periment. The results can be seen in Tab 3.

Table 3: Overview of the performance score of State-
Farm when masking after neutral and charged current
(NC and CC) and different particle types.

Ω φ θ log10(E) E - bias
NC 41.24 37.98 15.84 0.2612 -0.25
CC 33.78 30.70 12.56 0.1825 0.02
µ 27.53 22.40 9.71 0.3812 -0.59
νµ 31.69 28.65 11.65 0.1827 0.02
νe 40.03 37.05 15.34 0.1709 0.02
ντ 38.70 35.30 14.97 0.2037 -0.16

7.1.2 Particle Classification

Using GGConv, we attempted to determine the par-
ticle identification number. The type of particle
was one-hot-encoded and weighted in accordance
with Tab. 1. No difference between particles and
their corresponding antiparticles were made. The
resulting AUC can be seen in Fig. 22.
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Figure 22: Classification performance for particle type
in the OscNext dataset. The performance displayed in
a ROC-curve. Particles and anti-particles were not dis-
tinguished.

7.1.3 Ensemble Predictions

The results in Sec. 7.1.1 and Sec. 7.1.2 show the
individual performance of the models; the models
differ a lot and for this reason the reconstructions
from the four models as well as the particle clas-
sification from GGConv were combined in an en-
semble model (as describe in Sec. 6.5) to improve
the performance further.

To train the ensemble, the test sample from the Os-
cNext dataset was used. The test data was split
into a new train/test split of 80 % / 20 % and the
ensemble was trained using MAE23 and stopped
when the performance gain plateaued. The per-
formance of the ensemble is shown in Tab. 4. For a
visual comparison of the predicted variables with
the truth, refer to Fig ?? in the appendix.

Table 4: Table of performance metrics for the ensemble
model, best performance of any GNN and Retro. For
energy the width, w(∆ log10(E)) is used, while the an-
gles are reported as median of absolute difference. The
best GNN is marked by the colour of the model with
that performance and the best measure in each row is
marked by bold.

Ensemble Best GNN Retro
log10(E) 0.21 0.21 0.24
θ (deg) 12.6 12.9 15.0
φ (deg) 29.6 29.6 38.0
Ω (deg) 33.4 32.8 40.6

7.2 Muon Reconstruction

Although the focus of IceCube is on neutrinos, muons
make up a large fraction of the events detected.
This makes them a high priority, since they can
both be used for calibration of reconstruction al-
gorithms and to clean a sample of neutrinos from
muons. Directional reconstruction is desired in or-
der to calibrate our predictions against the moon
shadow.

The performance of the different models is com-
pared in Tab. 5 and in more depth in Figs. 36
and 41 in the Appendix. The first displays the en-
ergy dependent performance while the second is
an overview of the uncertainty predictions.

Table 5: Comparison of the performance metrics for the
three models used for muon reconstruction. Metrics are
the same as Tab. 2. AntHill was not used for predicting
muon energy and is thus left out.

θ φ Ω log10(E)
StateFarm 1.72 ◦ 5.49 ◦ 4.09 ◦ 0.1340
GGConv 2.77 ◦ 7.52 ◦ 5.77 ◦ 0.1376
AntHill 1.88 ◦ 5.57 ◦ 4.19 ◦ -
σ 0.01◦ 0.02 ◦ 0.01 ◦ 0.0007

23periodic for the azimuth predictions
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7.2.1 Stopped Muons

As previously mentioned, some muons expend all
of their energy and stop within the confines of Ice-
Cube.

Combining a GNN-architecture with a single out-
put and a sigmoid activation layer, one can ob-
tain a probability, p ∈ (0, 1) from a graph. Now,
this model can be trained with the cross entropy
loss function in order to predict the probability p
that a muon is stopped in the ice. For readability,
the probability p is transformed using logit(p) =

log(p/(1− p)), making it easier to compare prob-
abilities near 0 or 1.

Trying to obtain a stopped-muon classifier with AntHill,
it was possible to achieve an AUC-score of 0.927.
The ROC-curve of the classification as well as the
distributions for the labeled data is displayed in
Fig. 23. Even though the two distributions have
an overlap, it is possible to make a cut in logit-
scores which leaves very few non-stopped muons
in the sample. The base fraction of stopped muons
is 68.2%, but making a cut at logit(p) = 2.0, the
fraction of stopped muons is increased to 98.2%,
while only removing 35% of the stopped.24

7.2.2 Information in SRT Cleaned Pulses

The MuonGun dataset contained a variable telling
if a pulse ”survived” the SRT cleaning or not (see
Sec. 3.6). To test if any information is lost doing
the SRT cleaning for muons, AntHill was trained
with and without the SRT cleaning for angular re-
construction. The median of the angle differences
for total, azimuth, and zenith angles can be seen
in Tab. 6, showing a 30% improvement when in-
cluding all pulses over the cleaned data. The en-
ergy dependent performance is displayed in Fig.
42. Note that the uncleaned events perform signifi-
cantly better in the 2.5 ≤ log10(E) ≤ 3.25 log10(GeV)

range, but both sets perform almost identically at
high energies.

7.3 Uncertainties from Probabilistic Loss

In this section, the uncertainties resulting from em-
ploying the loss functions described in Sec. 4.3.6

24In other words, a true positive rate of 0.982 at a false pos-
itive rate of 0.35
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Figure 23: Overview over AntHill performance on
stopped muon classification in the MuonGun dataset.
The first plot shows the ROC-curve for the classifica-
tion. The second plot compares the distribution of logit
score for stopped and non-stopped muons respectively.
The third plot shows how the logit scores are depen-
dent on energy.

will be analyzed to see if they are reliable in de-
scribing the accuracy of the model.

To get a sample of accurate events, it is possible
to cut in the predicted uncertainty of the models
only considering e.g. the 50% most certain events,
hopefully improving the accuracy. Furthermore,
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Figure 24: Zenith sigma analysis for our models and Retro. First plot shows the true standard deviation of pulls
masked as below percentile of predicted uncertainty. Note that we only consider pulls below 5 since Retro some-
times has pulls of order millions, ruining the mean as a statistic. The percentage of pulls discarded is shown in
the legend. Second plot shows the performance (16th, 50th, and 68th percentile) for predictions masked as below
certain percentiles of predicted uncertainties.

Table 6: Table of performance metrics for angular dif-
ferences in the prediction from AntHill on MuonGun
data with and without SRT cleaning of events. All val-
ues are median of the angular differences given in de-
grees. For the energy dependent performance, see Fig.
42 in the appendix

.

[deg] 2D 3D 2D clean 3D clean
θ 1.88 2.02 2.60 2.96
φ 5.57 5.38 8.89 8.37
Ω 4.19 4.14 6.52 6.42

as the used probabilistic distributions are supposed
to be Gaussian on the surface of the hypersphere,
it is beneficial to investigate whether or not the un-
certainties actually render Gaussian distributions.
In Fig. 24, this is tested by considering events only
below a certain percentile in our predicted uncer-
tainty. The metrics described in Sec. 4.3.8 are con-
sidered for different uncertainty percentiles. The
Gaussianity of the pull distribution is tested by con-
sidering the actual standard deviation of the pulls
(z =

ytrue−ypred
σpred

), which should be 1 if the errors are
actual Gaussian. The more complete Fig. 40 can be
found in the Appendix.

Overall, we see that our models generally perform
well and have better uncertainty estimates than Retro.
We see that the Gaussianity condition is fulfilled
and that cutting in the predicted uncertainties vastly
improves precision, e.g. for StateFarm, the median
residual is reduced by a factor of 3 going from the
full sample to the 20% most certain.

7.4 Comparison of Angular Loss Functions

The choice of loss function is critical in model de-
velopment. In this section a comparison of the loss
functions for directional regression is provided, and
their accuracy across the full night sky is evalu-
ated. All loss functions were used to train GGConv.
We consider the following (see Sec. 4.3.5 and 4.3.6):

• MSE+MAE: The sum of the MSE and MAE,
which can be considered the baselines for any
regression problem. Only non probabilistic
loss is used here.

• SvM: The Spherical von Mises Fisher distri-
bution.

• 2xPvM: The product of 2 Polar von Mises Fisher
distributions.

• SvM/2xPvM: A combination of SvM and 2xPvM,
where for each batch, the loss is computed
for both functions but it is randomly chosen
which one will dominate the sum of the two
losses, by a factor 107.25

• vG A multivariate normal distribution for the
vector components. vG predicts the x, y, z
components of the directional unit vector and
provides an uncertainty for each component.
When testing, the azimuth and zenith angle
are calculated from the un-normalized vec-
tor predictions.

25The randomization is 50/50 and the factor is arbitrarily
chosen.
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Figure 25: Comparison of the distributions of the azimuth and zenith prediction for each loss function. For a
visualization of the full night sky see Fig. 46 in the Appendix.
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Figure 26: Performance measure of the angle predic-
tion at (16th, 50th, and 68th) percentile for different loss
functions. In general, the probabilistic loss functions
perform better across the entire energy range, with the
SvM/2xPvM being the worst of the four.

A comparison of the performance for the differ-
ent loss functions for directional regression can be
found in Fig. 26. MSE+MAE is clearly lackluster
which is due to the functions not being periodic
as seen in the distributions of the predictions in
Fig. 25 (or the full night sky in the Appendix in Fig
47). SvM and vG provide similar results since they
both essentially minimize µµµTxxx. Both has a bias to-
ward ”poles”, whereas 2xPvM and MSE+MAE has
a bias towards the horizon. This was the motiva-
tion for SvM/2xPvM which can be seen to approx-
imate the true distribution better, at a minor cost in

directional prediction accuracy.

7.5 Moon Shadow Reconstruction

Since cosmic rays consist of atomic nuclei, they can
be blocked by the moon on their path towards the
atmosphere. Thus, given a precise enough recon-
struction, a deficit of muons can be seen from the
direction of the moon. This renders the moon shadow
a useful calibration source, since it is possible to
quantify the precision of a given reconstruction al-
gorithm in data with a pseudo-label. The full anal-
ysis thus requires a gathering of many such events
for which the moon is visible. It is also necessary
to apply a translation with regards to the moon po-
sition. This is feasible, but not encompassed in this
project. Instead, a toy dataset is simulated where
the appertaining reconstructions are based on our
model performance. There is evidence to suggest
that this approach is acceptable, since Retro has al-
ready performed the moon analysis, and our mod-
els maintain the correlation with Retro in real data
as can be seen in Fig. 27. For a discussion of the
used real observations see the Appendix Sec. 12.9.

7.5.1 Simulating the Dataset

Creating the toy dataset consists of generating a
true distribution and applying deviations gener-

28



0.8 1.0 1.2 1.4 1.6 1.8 2.0

1.0

1.2

1.4

1.6

1.8

2.0

G
G

C
on

v 
pr

ed
ic

tio
ns

Energy_log10 [log10GeV]

1 2 3 4 5

1

2

3

4

5

MC

DATA

Azimuth [rad]

1.0 1.5 2.0 2.5
0.5

1.0

1.5

2.0

2.5

Zenith [rad]

2 4 6 8

Retro predictions

0.175

0.200

0.225

0.250

0.275

0.300

0.325

G
G

C
on

v 
pr

ed
ic

tio
ns

log10E [log10GeV]

0.2 0.4 0.6 0.8 1.0 1.2

Retro predictions

1

2

3

4

5
 [rad]

0.1 0.2 0.3 0.4 0.5 0.6

Retro predictions
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

 [rad]

Figure 27: Applicability of the Monte Carlo trained ML
methods in real data. Shown are the contour plots of
the correlation between predictions made by GGConv
and Retro for energy, θ, φ, and their uncertainties in
MC. The underlying heatmap contains the same but in
real data. The data sample size is significantly smaller.
The interval of the axes are chosen to include the inner
90% of the sample and are equal for MC and data. A
bigger version can be found in the Appendix in Fig. 47.

ated from the model residual distribution. The points
are originally ascribed an azimuthal and zenith an-
gle on the sky, taking as our average fluence 312
events per square degree. The origin is set to be
the moon position. Points within a radius of 0.5◦

are then excluded, as to simulate the moon radius.
This is slightly contrary to the true size of the moon
which has a radius that varies between 0.245◦ and
0.284◦ [55]. This factor of 2 is arbitrary and unim-
portant for the analysis, but was included for ease
of testing. The remaining points are then trans-
lated by an angle, which is sampled from the model
residuals. The points are also ascribed the asso-
ciated predicted uncertainty. The direction of the
translations are distributed uniformly.

In practice, the spherical geometry of the sky is
easily accounted for when translating the events
with regards to the moon position. However, if
the translation is already done and the considered
field of view has sidelengths of < 10◦, it is simplest
to assume the geometry in question is Euclidean.
This convention is adopted from here on.

These ”observations” immediately render themselves
susceptible to an unbinned Likelihood fit. How-
ever, in order to account for the uncertainty of each
point, a generalization of the maximum likelihood

method is needed. A sketch of a derivation is at-
tempted in the following section.

7.5.2 Unbinned Likelihood on Data with Uncer-
tainties.

Maximum Likelihood Estimation describes the method
of adjusting the parameters of a model such that
the likelihood of data being from a given model is
maximized. The method does not necessarily de-
scribe how well the model fits the data, but given
a specific model it determines a good estimate of
what the parameters should be.

Usually it is certain what observations have been
made, and the likelihood can be computed by mul-
tiplying the probabilities of each event under the
assumption that they were sampled from the model:

L(θ|x) =
N

∏
i

P(xi|θ) (39)

However, it can be advantageous to generalize the
framework for uncertain data. Instead of multi-
plying over the data, Eq. 39 can instead be written
as multiplying over the entire domain of possible
observations, Ωx, and exponentiate the probabil-
ity by how many times any observation occurred,
denoted Nx. In that case the likelihood is:

L(θ|x) = ∏
x∈Ωx

P(x|θ)Nx (40)

But Eq. 40 is not practical since there is no rea-
son to check the entire domain.26 However, one
can now consider the case, where the observations
are uncertain and are instead described by some
set of parameters θx (eg. mean, variance, and so
on), such that the observation xi is described by its
Probability Density Function xi ∼ PDF(x|θxi).
The likelihood can then be extended to the follow-
ing:

L(θ|x) = ∏
θx∈Ωθx

P(x|θ, θx)
Nθx P(x|Ωx ,θx) (41)

The product is now over all possible data param-
eters Ωθ . P(x|θ, θx) is the probability of observing
x given model parameters θ and the data param-
eters θx. Nθ is the number of observations in the
dataset with θx as parameters27 and P(x|Ωx, θx) is

26This is not even feasible for a continuous domain Ωx
27For the continuous case this is practically always 1
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the probability of observing x in the domain given
θx

Now it is more appropriate to revert back to con-
sidering a product over the dataset instead of all
the possible configurations Ωθx .

L(θ|x) =
N

∏
i

P(x|θ, θxi)
P(x|Ωx ,θxi ) (42)

Comparing Eq. 42 to Eq. 39, we see that now the
data x does not consist of absolute observations xis
but of the θxi s describing the PDFs of the observa-
tions. Now, the probability of an observation be-
ing in Ωx is not 0 or 1 but between 0 and 1. The
interpretation is that P(x|Ωx, θxi) is a weight fac-
tor, where a lower probability means lower con-
sideration is made for that point when adjusting
the model parameters.

Further clarification is given by expressing the prob-
abilities in Eq. 42 in terms of the model P(x|θ) and
the PDF of the observations PDF(x|θxi).

P(x|θ, θxi) =
∫

Ωx
P(x|θ)PDF(x|θxi)dx

P(x|Ωx, θxi) =
∫

Ωx
PDF(x|θxi)dx

(43)

If instead the domain is discrete, the integrals be-
come sums since PDF(x|θxi)dx → PMF(x|θxi) where
PMF is the Probability Mass Function for xi.

7.5.3 Application on Moon Toy Dataset.

In this analysis we assume the observations to be
normally distributed with mean µi and variance σ2

i

PDF(x, y|θxi) = N (x, y|µi, σi)

µi and σi are predicted by a GNN model.
The moon model is then given by:

P(x, y|θ) = 1
N

(
1− f e−

(x−µx)2+(y−µy)2

2σ2

)
(44)

Closed form expressions can be found for both the
normalization constant N in Eq. 44 and the inte-
grals in Eq. 43.28

The free parameters of the model are the place-
ment µx, µy, the width σ and the depth f . The
minimization is carried out with iminuit [56] and
yields the results shown in Fig. 28. As can be seen,

28These can be found in Jonas Vinther’s GitHub
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Figure 28: The results of the unbinned likelihood fit
which accounts for uncertainties of the data points. The
heatmap is the sum of the PDFs generated by the po-
sitions of the points and their uncertainties. The uncer-
tainty on f is undefined because the value reached the
end of its interval f ∈ [0, 1]. For a comparison to the no
moon shadow case, see Fig. 38 in the Appendix.

all the true parameters are well within the error-
bars of the estimates. Also notably, the ratio of the
shadow to the background, as estimated from the
heatmap, is around 2 − 3%. However, an f of 1
is estimated by the minimization. This can be at-
tributed to the fit accounting for the uncertainty of
each point, since no point had its entire PDF under
the moon shadow. This results in no error estimate
for the parameter f and allows us to remove it as
a free parameter and fix f = 1, in contrast to the
standard unbinned likelihood method, for which
the results are shown in Fig. 29.
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The results of the standard unbinned likelihood fit can
be seen, but for a clarification of why the shadow is
placed as it is, see Fig. 37 in the Appendix. The same
analysis, but with artificially better accuracy, can be
found in Fig. 39 in the Appendix.
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Both the distance from the origin and the width
is off by about ∼ 2.4 and 2.6 sigma respectively,
which are both barely acceptable deviations.

To compare the two methods, a hypothesis test is
carried out. Wilk’s Theorem states that given an
alternative hypothesis which has likelihoodLalt and
has the null hypothesis nested, the test statistic D =

2ln
(
Lalt
Lnull

)
is approximately χ2-distributed with de-

gree of freedom d falt− d fnull . It is not given that D
follows a χ2 - distribution, and often it is advanta-
geous to carry out a simulation to estimate a dis-
tribution for D. However, here Wilk’s theorem is
assumed to be applicable. The null hypothesis is
then: f = 0 with d fnull = 0. For the method that
accounts for uncertainties the alternative hypoth-
esis is the result of the minimization with f = 1
such that d falt = 3. It is the same for the standard
method but with d falt = 4 since f is still a free
parameter. The resulting p-values are 2.6% and
0.033%, respectively, indicate that both are signif-
icant, but with a notably higher significance from
the standard method.

Eq. 43 can thus be said to better estimate the pa-
rameters of the true distribution prior to the added
noise and give more conservative p-values in ac-
cordance with the rather low sample size and the
introduction of uncertainty.

8 Discussion

Throughout this thesis, GNNs were tried on differ-
ent aspects of the IceCube experiment. In the fol-
lowing section the usefulness and performance of
this framework will be discussed, along with pro-
posed solutions to some of the problems presented
in the previous sections.

8.1 Graph Neural Networks

As a part of this project, GNNs have successfully
been employed and optimized to work with data
from the IceCube Experiment, and we have gained
several insights during this process. In this seg-
ment some of the most interesting outcomes will
be highlighted.

Many points are relevant to most NN types, but
some are specific to GNNs.

8.1.1 Problems with Graph Neural Networks

Regressing large samples of data in order to ad-
just the weights and biases is very effective, and
provides a data-driven way of predicting features
of new data. However, since the networks aim
to minimize the average loss, they will often tend
to simply regress to the mean of population-wide
statistics.

Subjective choices of hyperparameters means that
reaching the global minimum is by no means guar-
anteed, even if the UAT holds. This means that
countless experiments have to be made to get an
estimate of the actual best performance of any model.
For example Fig. 19 took 210 GPU hours to com-
plete.

Lack of explainability means that GNNs are used
as black box algorithms, which can make it hard to
draw conclusions from or have confidence in the
inner workings of a GNN, even if it is very precise.

Possible lack of extrapolation ability is a problem
that is present in any NN model, since the learn-
ing method is a basic ”monkey see, monkey do”
framework. If any truly spectacular and extraor-
dinary events happen, it is unlikely that a Deep
Learning approach will catch it.

Labeled data is required to do supervised learn-
ing, but not always available and any model thus
relies heavily on correct simulation.

Speed for GNNs is subpar compared to other NN
approaches with more rigid data structures.

Global features can be hard to capture efficiently,
since GNNs by nature are constructed to focus on
neighbourhoods. One solution to this is to simply
extend the neighbourhood to include every point,
but for large graphs this quickly becomes compu-
tationally infeasible and leads to oversmoothing,
since a node considering all its neighbours equally
will risk not gathering relevant information from
the nodes that are most relevant. This can be miti-
gated by using attention networks but this has not
been as successful as we had hoped. One ad-hoc
work-around that has worked very well was to sim-
ply gather graph-level information, like the mean,
variance, min, and max of each feature across all
nodes, and feeding it directly to the decoder after
the graph encoding. This consistently improved
performance.
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8.1.2 Advantages with Graph Neural Networks

Highly flexible inputs is one of the principal ad-
vantages of the GNNs. One of the main motiva-
tions behind choosing this framework is that GNNs
work on any node structure. This means that there
is no reason to pad or select sub samples of the
DOM pulses from an event and all the data can
thus be utilized.

Speed for GNNs is still of order 105 faster than
the currently employed classical algorithms, even
if they are slower than other NN based algorithms.

Edge features allow graphs to encode relations be-
tween data points more readily than other frame-
works.

Theoretical Versatility As can be seen in the very
different custom layer and model implementations,
the GNN framework is extremely versatile, and
can be combined with already existing Deep Lean-
ing frameworks.

Practical Versatility As IceCube will soon see the
implementation of the new DOMs in Upgrade, new
algorithms will need to be implemented, taking
into account the somewhat peculiar new structure.
Given a reasonably accurate simulation of the new
sensor array, the models proposed in this project
(and an ensemble) will most likely be able to begin
accurate and reliable reconstructions within hours.
This would be the same for any other upgrade.

We are only getting started. GNN research is still
getting started, but is already the most popular
topic at e.g. the ICLR conference.

8.2 Neutrinos

For the zenith angle, the general distribution was
missed by quite a bit, which was mainly due to
the loss function tending to either regress uncer-
tain points towards the poles or towards the mid-
dle. This could be fixed by sacrificing some pre-
cision and implementing a correcting term in the
loss function or to do a combination of e.g. the
polar and spherical likelihood functions, since the
spherical likelihood pulls towards the poles and
the polar likelihood towards the average zenith an-
gle (SvM / 2xPvM, see Fig. 26). The KDE loss
(Sec. 4.3.7) can correct the distribution if the train-
ing batch size is above a few thousand, but for sin-
gle models sub par precision cannot be avoided

Figure 30: StateFarm polar likelihood misses the neu-
trino zenith distribution, but amending it with a KDE
loss term reduces the precision significantly.

as can be seen in Fig. 30. Notably, Retro hits the
target distribution well, but with lower accuracy
compared to the 2xPvM+KDE-trained StateFarm.

As described in Sec. 2, the neutral and charged
current interactions are quite different and we ex-
pected to see better performance for CC interac-
tions. We also expected muon neutrinos to be eas-
ier to be regress, since they create track-like events
and we have a larger training sample of muon neu-
trinos. As can be seen in Tab. 3, these expectations
were correct. StateFarm performed slightly better
on tau than electron neutrinos.

The model ensemble also models the target distri-
butions better, and additionally improve upon the
accuracy.

8.2.1 Classification Tasks

When testing the particle classification in the Osc-
Next dataset with GGConv, the muons were eas-
ily separated from the neutrinos. However, it is
important to keep in mind, that the two types of
events come from different simulations and this
could be the reason for the performance. If the
performance were to translate to data, this classi-
fication algorithm would significantly reduce the
muons (in this case noise) from a neutrino sample.

The neutrinos were harder to separate (AUC was
best for muon-neutrinos with 0.703), and this capa-
bility would have to be improved in order to recre-
ate the oscillation plot seen in Fig 2. Even though
the classification was not perfect the information
could still be used in the ensemble to improve the
knowledge of the particle type when reconstruct-
ing energies and angles.
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8.2.2 Comparison with Retro

The speed improvement is mainly due to the na-
ture of the algorithm, where we employ a series
of matrix multiplications instead of a look-up ta-
ble. The speeds quoted in table 2 are subject to im-
plementation differences, and thus should all be
able to achieve speeds of 5 · 104 − 105. In general
our predictions are more accurate and our uncer-
tainties better when compared to Retro (Figs. 24
and 40). It can be discussed whether or not the un-
certainties from the probabilistic loss functions are
Gaussian by construction or inherently Gaussian.
Other uncertainty measures could be more appro-
priate.

Although we show significant improvements com-
pared to Retro, we postulate progress can still be
made, although we have seen some evidence of
hitting the information limit:

• Different architectures all achieve similar ac-
curacies (albeit with different strengths and
weaknesses).

• Vastly larger networks gave no notable im-
provement.

However, the ensemble was a quick implementa-
tion that improved the overall precision, which has
led us to believe that there are still improvements
to be made.

8.3 Muons

Compared with the performance on the MuonGun
dataset, it becomes evident that a much better an-
gular precision can be reached. For example, half
the muons reconstructed with AntHill, attain an
angular residual of 4.2◦ while it is 36.4◦ for Os-
cNext. The improved accuracy is credited to the
muons being a charged particle, which are observed
at higher energies and directly instead of through
their decay products.

Furthermore, the MuonGun dataset came with the
pulses which were not removed by the SRT-cleaning.
Including this information in the data improved
the median accuracy with a factor≈ 2

3 . This demon-
strates the versatility of the GNN architecture, where
more information can simply be included in the al-
gorithms in exchange for slightly longer train time.

Unfortunately, the OscNext sample was already SRT-
cleaned, which removed the option for trying the
same for Neutrinos.

The GNN was capable of finding a clean sample
of muons stopped in the detector. However, this
is not surprising when comparing the energy dis-
tribution with the predicted probability, demon-
strating that low energy muons are often stopped
within the detector (Fig. 23). For this reason a
good energy prediction would be a good indicator
that a model can separate the stopped muons. Due
to the ensemble performance gain, we expect an
ensemble to perform well when classifying stopped
muons.

8.3.1 Moon Shadow Reconstruction

The developed likelihood method, which accounts
for the uncertainties is useful for not only examin-
ing the predictive power of a reconstruction but
also the correctness of uncertainties. While one
could do the moon analysis for different bins of σ,
one can now instead keep the whole sample and
see how well the estimated parameters align with
the expected values, since this method seemingly
is able to estimate the true distribution given that
the uncertainties are correct. However, for more
conclusive and quantifiable results a more thor-
ough analysis is necessary.

8.4 Interpretability

We compared the Integrated Gradients (IG) and
SHAP methods of explaining events, and found no
correlation between the two.29 We compared these
across GGConv and StateFarm. For StateFarm, us-
ing IG, the DOM positions were most important,
with the z position being of particular importance
(lower plot in Fig. 31). For GGConv, using SHAP,
the DOM positions were less important, while the
width parameter became by far the most impor-
tant (upper plot in Fig. 31).

These two explanations seem contradictory but could
reflect the two models working very differently,
although this seems somewhat dubious, consider-
ing that they have similar performance which we
believe is close to the information limit. Further

29Taking into account the computationally heavy SHAP
method, only 100 random events were compared
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Figure 31: Average relative importance for output vari-
ables with respect to input variables for SHAP for the
upper plot and Integrated Gradient for the lower.

work must be done to explain the networks. The
correlation plots can be found in Appendix 12.7.

9 Conclusion

In this project, Graph Neural Networks were im-
plemented to do reconstruction of low energy par-
ticles in the IceCube Experiment. Four different
architectures were proposed by the authors, which
all possess similar or better reconstruction capabil-
ities compared to the current Retro algorithm. The
best models improved accuracy over Retro by ≈
14% reduction in the median angular difference for
zenith, azimuth, and total angle, while the width
of the energy residual distribution was reduced by
≈ 13%. When combined in an ensemble, the re-
construction was improved further to ≈ 16% for
the zenith metric. Furthermore, the models pro-
vided well behaved uncertainty estimates when trained
with probabilistic loss functions. The authors hope
that this will facilitate the usage of low energy neu-
trinos at IceCube.

For muons, the reconstruction proved very accu-
rate with a median absolute zenith residual ≈ 2◦

and median absolute angular residual≈ 4◦, which
according to our analysis should be enough to see
the moon in data, allowing for physical calibra-
tion. When applying the GNN framework to clas-
sify if muons stopped within the detector, a very
pure sample could be achieved containing 98%
stopped muons while only reducing the amount
of data by 35%. The AUC for this classification is
0.927. In addition, muons could easily be classified
from neutrinos with an AUC of 0.970. However,
classifying the flavour of neutrinos proved more
difficult and AUC scores around a mere 0.67 were
achieved.

We have demonstrated that our GNN architectures
have multiple other advantages. First, the compu-
tation time compared to Retro is faster by five or-
ders of magnitude. Furthermore, the GNN frame-
work is very flexible and can easily be adjusted
to new IceCube upgrades with new parameters,
even if the DOMs are placed weirdly or have other
properties than the existing DOMs, provided sim-
ulations can accurately capture these aspects.

We have also shown that GNNs handle noisy data
well, actually performing better when noise was
passed along, so the many levels of cleaning could
no longer be relevant.

10 Further Work

Explainability could be improved since our first
attempts pointed in very different directions.

Speed could be improved since the biggest bottle-
neck in reconstruction speed is data-loading. Hav-
ing access to the raw data and time to implement
it better, we hypothesise the speed of regression
could be greatly optimized.

Creating an ensemble model, the overall perfor-
mance improved compared to a single GNN. This
process was however started late in the project since
it required all group members to have predictions
on the test set. For this reason the ensemble is not
well-optimized and the idea as a whole has a lot
more potential. It would be interesting to combine
the idea of explainability and SHAP values with
the simpler ensemble model. This could lead to
nuanced comparisons of the models.
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The idea of doing GNNs and ensembles could also
be expanded to encompass the entire IceCube frame-
work. Throughout this thesis GNNs have proved
useful in both classification and reconstruction, where
even DOMs previously deemed noise helped ac-
curacy. One could imagine having a bigger collec-
tion of GNNs doing everything from determining
the trigger to cleaning and reconstructing the di-
rection, energy, and particle type. We hypothesize
that this could keep up with the events in IceCube
in real-time.
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12 Appendix

12.1 Notes on Numerical Implementations

12.1.1 Implementing the 3 dimensional vMF

It is advantageous to extend the domain of the 3-dimensional von Mises distribution to ±∞, since the
network otherwise won’t account for the bounded domain. For φ it is already given since the range of φ

is ordinarily [0, 2π]. For extending θ to ±∞, it is necessary to take the absolute value of the sine functions
where θ is input, since the range of θ ordinarily is [0, π]. Including some trigonometric identities the
cosine of the angle is then:

cos(Ω) =
1
2
[cos(θx − θµ) + cos(θx + θµ)]

+
1
2
|sin(θµ)|[sin(θx + φx − φµ) + sin(θx − φx + φµ)]

The negative log likelihood can then be written as:

−ln(vMF) = −κcos(Ω)− ln(κ) + κ + ln(1− e−2κ)

Where sinh is rewritten as sinh(κ) = 1
2 eκ(1 − e−2κ) in order to mitigate the numerical instability of

ln(sinh(κ)) for large κ, and where an irrelevant constant is left out.

12.1.2 Implementing the 2 dimensional vMF

In the current implementation the gradient of I0 is not defined, so as of yet, a close approximation of I0 is
used [57]:

I0(κ) ≈ cosh(κ)
1 + 0.24273κ2

(1 + 1
4 κ2)

1
4 (1 + 0.43023κ2)

Again cosh should be rewritten as cosh(κ) = 1
2 eκ(1 + e−2κ) in order to mitigate the numerical instability

of ln(cosh(κ))

In order to extend the domain of cos(Ωθ) for the zenith angle θ to ±∞ it’s sufficient to take the absolute
value of θµ such that cos(Ωθ) = cos(θx − |θµ|)
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12.2 Model Architectures

Figure 32: This is what LifeGuard ended up looking like. Red is input, dark green is output. Dotted lines are
poolings.
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Figure 33: The architecture of AntHills
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12.3 Target Feature Correlation

Figure 35: Correlation plot for the different output-features. MuonGun is blue. OscNext is orange.
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12.4 Muon Angle Performance
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Figure 36: An energy-dependent view over the performance of the architectures on muons.

12.5 Moon Shadow Analysis

In Eq. 44, N =
∫

Ωx,y
(1− f e−

(x−µx)2+(y−µy)2

2σ2 )dxdy. Keep in mind x and y are angle differences, but as men-
tioned earlier, they are treated as cartesian coordinates. This model is a uniform distribution with a
Gaussian subtracted, so f ∈ [0, 1] is the ratio of the darkest part of the shadow and the background and µ

is the placement of the shadow and σ is the width.
For a square domain of length and height 2a and with the standard definition of the error function
er f (z) = 2

π

∫ z
0 e−t2

dt the normalization constant N can be shown to be:

N = 4a2 − 1
2

π f σ2
[ (

er f
(

µx + a√
2σ

)
− er f

(
µx − a√

2σ

))
(

er f
(

µy + a
√

2σ

)
− er f

(
µy − a
√

2σ

))]
Similarly, by using the error function, a closed form expression can be found for

P(x, y|θ, θxi) =
∫

Ωx,y

dxdy
N

(
1− f e−

(x−µx)2+(y−µy)2

2σ2

)
N (x, y|µi, σi). The result of this integral is much too com-

plicated and long to be useful to write here, but it is useful when carrying out the minimization of Eq.
42 and can be found in https://github.com/Vinther901/Neutrino-Machine-Learning/blob/master/

MoonAnalysis/Moon_Shadow_MC_testing-Copy1.ipynb as ”expr2”
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Figure 37: The 2d-histogram of the moon toy-dataset with a Gaussian kernel applied. This reveals why the standard
unbinned likelihood places the fit function as it does. The standard method estimates a shadow ratio of f =

0.13 ± 0.04, which can be explained by the ratio estimated from this and turns out to be ∼ (1 − 1230
1420 ) ≈ 13%.

Furthermore, both the distance from the origin and the width is off with about ∼ 2.4 and 2.6 sigma, respectively,
which are acceptable deviations.
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Figure 38: Another simulation with a moon present compared to if there were no moon shadow.
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Figure 39: A less difficult case, where the deviations and uncertainties are scaled by a factor 1
5 . Using Wilk’s theorem

a pval of 7e-21 over the null hypothesis of a uniform background is obtained.
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12.6 Performance Figures
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Figure 40: Zenith sigma analysis for our models and Retro. First row shows the true standard deviation of pulls
masked as below percentile of predicted uncertainty and the performance (16th, 50th and 68th percentile) for pre-
dictions masked as below a certain percentile of predicted uncertainty. Second row shows pull plots for and unit
gaussians for reference. Third row shows the correlation between predicted uncertainty and zenith residual.
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Figure 41: Zenith sigma analysis for three of our models on MuonGun data. First row shows the true standard
deviation of pulls masked as below percentile of predicted uncertainty and the performance (16th, 50th and 68th
percentile) for predictions masked as below a certain percentile of predicted uncertainty. Second row shows pull
plots for and unit gaussians for reference. Third row shows the correlation between predicted uncertainty and
zenith residual.
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Figure 42: Prediction performance on the angles in MuonGun.

12.7 Explainability

Due to numerical instability in the gradient, we implemented taking the average of 50 runs of the Inte-
grated Gradient method.

The heatmap showing the correlations are included here.
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Figure 43: Correlations between parameters for Integrated Gradients
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Figure 44: Correlations between parameters for SHAP
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azi_d_x_IG
azi_d_y_IG
azi_d_z_IG

azi_d_time_IG
azi_q10_IG

azi_wi_IG
azi_rqe_IG

zeni_kap_d_x_IG
zeni_kap_d_y_IG
zeni_kap_d_z_IG

zeni_kap_d_time_IG
zeni_kap_q10_IG

zeni_kap_wi_IG
zeni_kap_rqe_IG
azi_kap_d_x_IG
azi_kap_d_y_IG
azi_kap_d_z_IG

azi_kap_d_time_IG
azi_kap_q10_IG

azi_kap_wi_IG
azi_kap_rqe_IG

1 0.1-0.20.1-0.1 -0 0.3-0.9 -0 0.1-0.1 0 0.1-0.3-0.9 -0 -0.2 0 -0.1 0 0.3 0.6 0 0.1 0.3 0.2 0.1 0.1 0 -0.1 -0 -0.1 -0 -0.30.4 0.1 0.1 0 -0.10.2 0.2 0.1 0.1-0.10.1 0.1 0 0 0 -0 -0.1-0.1 0 -0 -0 -0 0 -0 -0 0 -0 0 -0 0 -0.1 -0 0 -0 -0 -0 0 -0 0 0 -0 -0 -0 -0 -0 -0 0 -0 -0 -0 -0 0 -0
0.1 1 -0.1-0.1-0.2-0.1 -0 -0.1-0.1 0 -0.1 -0 -0 -0 -0.1-0.1 -0 0.1 -0 0 -0.1 -0 0.1 0 0.1 0.1 0 0 0 -0 0 -0 -0 0.1 -0 -0.1 0 0 -0 0 0 -0 0.1 -0 -0.10.1 -0 -0.1-0.1 0 0 0 -0 0 0 -0 -0 0 -0 0 -0 0 -0 -0 0 -0 0 -0 0 -0 0 0 0 0 -0 0 0 -0 0 0 0 -0 0 -0 -0 -0 0
-0.2-0.1 1 0.2 -0 0.1 0.2 0.1 0 -0.1 0 0.1-0.1 0 0.1 0 0.1 0.1 -0 -0 -0.1-0.1 -0 -0.1-0.2 0 -0 -0.1 -0 0 0 -0 -0 0.1-0.1 -0 -0 0 0 -0.1-0.1 0 -0 -0 0 -0 -0 0 0 0 -0 0 0 -0 -0 -0 -0 -0 -0 0 -0 -0 -0 -0 -0 -0 0 -0 -0 0 -0 -0 0 0 -0 -0 -0 -0 -0 0 0 -0 -0 -0 -0 -0 -0
0.1-0.10.2 1 0.2 0.1 0.4-0.1 0 0 0 -0 0 -0 -0.1 0 -0.10.1 0 0 -0 0 -0.1 0 0 0.1 0 0 0 -0.1 -0 -0.1-0.1 0 0.1 -0 0.1 0.2-0.1 0 0 -0 0 0 -0 -0 -0 -0 -0 0 0 0 0 -0 -0 0 -0 0 -0 0 -0 -0.1 -0 -0 0 -0 0 -0 -0.1 -0 0 0 -0 0 -0 -0 -0 0 0 -0 0 -0 -0 -0 -0 0 -0
-0.1-0.2 -0 0.2 1 -0 0 0.2 0.1 -0 0.1-0.1-0.10.1 0.2 -0 0 -0 0.2 0.1 -0 -0.1 0 -0 -0 -0.2-0.1 0 0.1 -0 0.1 -0 0 0 -0.1 0 -0 0.3 -0 -0 -0 -0.1 -0 0.1-0.1 -0 0 -0 -0.1 0 -0 0 0 0 -0 -0 -0 0 -0 0 0 -0.1 -0 0 0.1 -0 0 0 -0 0 -0 0 -0 0 0 -0 -0 0 0 0 0 0 -0 0 0 0 0
-0 -0.10.1 0.1 -0 1 0.2 0 0 0.1 -0 0.1 0.1 0 0 -0.1 0 -0 -0 -0.10.1 0.1 0 -0 -0 0 0.1-0.10.1 0 0 0 -0.1 -0 -0 -0 -0 0.2 0 0 0 -0.10.1-0.1-0.10.1-0.1 -0 -0 0 0 -0 -0 -0 -0 -0 0 -0 -0 -0 -0 -0 0 0 -0 -0 -0 0 -0 -0 0 0 0 -0 -0 -0 -0 0 0 0 0 -0 -0 -0 -0 0 -0
0.3 -0 0.2 0.4 0 0.2 1 -0.3 -0 0.1-0.10.1 0.1-0.2-0.3 0 -0.1 0 -0.1 0 0.3 0.3 -0 0 0.1 0.1 0 0 0 -0.1 0 -0.1-0.1-0.20.3 0 0 0.1-0.10.2 0.2 0 0 -0.10.1 0 0 -0 0 -0 -0 -0.1 0 -0 -0 -0 0 -0 -0 0 -0 -0 -0 0 -0 -0 0 -0 -0 0 0 -0 0 0 -0 -0 0 0 -0 -0 0.1-0.1-0.1-0.1 -0 0 -0.1
-0.9-0.10.1-0.10.2 0 -0.3 1 0 -0.10.1 -0 -0.10.3 1 -0 0.1-0.10.1 -0 -0.2-0.6 -0 -0.1-0.2-0.2-0.1-0.1 -0 0.1 -0 0.1 0 0.2-0.3 -0 -0.1 0 0.1-0.2-0.2 -0 -0.10.1-0.1-0.1 -0 -0 -0 0 0 0.1 -0 0 0 0 -0 0 0 -0 0 -0 0 -0 0 0 -0 -0 -0 0 -0 -0 0 -0 0 0 0 0 0 0 -0 0 0 0 0 -0 0
-0 -0.1 0 0 0.1 0 -0 0 1 -0.1 0 -0.1-0.10.1 0 -0 0 -0.1 0 0 0 0 -0.1 -0 -0.1-0.1 -0 -0 0 0 -0 0 0 0 -0 0 -0 -0 0 -0 -0 0 -0 -0 0 -0 0 0 0 -0 -0 -0 -0 0 0 0 0 0 -0 -0 0 -0 0 -0 0 -0 -0 0 -0 0 0 0 -0 -0 -0 -0 -0 -0 0 -0 -0 0 -0 -0 -0 0 -0
0.1 0 -0.1 0 -0 0.1 0.1-0.1-0.1 1 0.4 0.3 0.2 0.2-0.1 0 0 0.1-0.1 0 0.1 0.1 0 -0.2 -0 0 -0.1 -0 0 0 -0 0 -0 -0.10.1 0 0 -0 0.1 0.1 0.1 -0 0 -0 -0 0.1 -0 -0 0 -0 -0 -0 -0 -0 0 -0 0 -0 0 -0 -0 0 0 -0 -0 0 0 -0 -0 -0 0 0 0 -0 -0 -0 -0 0 -0 0 0 -0 0 -0 0 0 -0
-0.1-0.1 0 0 0.1 -0 -0.10.1 0 0.4 1 0.2 0.1 0.1 0.1 -0 0 0.1 0 -0.1-0.1-0.1-0.1 -0 -0.2 -0 -0 0.1 0 -0 0.1 0 0 0.1 0 -0.1 -0 -0 0 -0 -0.1 0 -0 -0 0 -0 0 0.1 0 0 -0 -0.1 -0 0 -0 0 0 -0 0.1 -0 0 -0 0 0 -0 0 -0 0 -0 -0 0 -0 0 -0.1 0 -0 -0 0 -0 0 -0 0 -0 0 0 -0 0

0 -0 0.1 -0 -0.10.1 0.1 -0 -0.10.3 0.2 1 0.3 0.2 -0 -0 -0.1 -0 -0.2 0 0.2 0.1 0 0 0 0.2 0 -0.1 -0 0.1 -0 0.2-0.1 -0 0.1 -0 0 -0 0.2 0.1 0.1 0 -0 -0 0 -0 -0 -0.1-0.1 0 -0 -0 0 0 -0 -0 0 -0 0 0 0 -0 -0 -0 -0.1 0 -0 0 0 -0 -0 -0.1 0 -0 0 0 -0 -0 -0.1 0 0 0 0 -0.1 0 -0 0
0.1 -0 -0.1 0 -0.10.1 0.1-0.1-0.10.2 0.1 0.3 1 0.1-0.1 0 -0.10.1 0 -0.1 0 0 -0 0.1 -0 0 0.1 0 -0.10.2 0.1 0.2 0.1 0 0.1 -0 0 -0 0.2 0.1 0 -0 0 -0 0 0 0 -0.1 -0 -0 0 -0 0 -0 -0 -0 0 0 -0 0 -0 0 0 0 0 -0 0 0 0 0 0 0 -0 0 0 0 -0 0 0 0 0 -0 -0 -0 0 0 -0
-0.3 -0 0 -0 0.1 0 -0.20.3 0.1 0.2 0.1 0.2 0.1 1 0.3 0.1 0.1-0.10.1 0 -0.1-0.3 -0 -0 -0.1-0.2-0.1-0.3 -0 0.5 -0 0.4 0 0.2-0.4 0 -0 -0 0.5-0.1 -0 -0.1 -0 -0 -0.1-0.1-0.1-0.1-0.1 -0 0 0 0 0 -0 0 -0 0 -0 -0 0 -0 0 -0 0.1 -0 0 -0.1-0.1 0 -0 0.1 -0 -0 -0 -0.1 0 -0 0 0 -0 0 0 0 -0 -0 0.1
-0.9-0.10.1-0.10.2 0 -0.3 1 0 -0.10.1 -0 -0.10.3 1 0 0.1-0.10.1 -0 -0.2-0.7 -0 -0.1-0.2-0.2-0.1-0.1 -0 0.1 0 0 0 0.2-0.3 -0 -0.1 0 0 -0.2-0.2 -0 -0.1 0 -0.1-0.1 -0 -0 -0 0 0 0.1 -0 0 0 0 -0 0 0 -0 0 -0 0 -0 0 0 -0 0 0 0 -0 -0 0 -0 0 0 0 0 0 0 -0 0 0 0 0 -0 0
-0 -0.1 0 0 -0 -0.1 0 -0 -0 0 -0 -0 0 0.1 0 1 -0.1-0.1 0 -0 -0.1 -0 -0.50.1 0 -0 0 0.1-0.10.1 -0 0 -0 -0 -0 0.1 -0 -0.1 0 -0 -0 -0 -0 -0.1 0 -0 0 0 0 -0 0 -0.1 -0 -0 0 0 -0 -0 0 0 -0 0 0 -0 -0 0 -0 -0 -0 0.1 -0 -0 -0 -0 -0 -0 0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0

-0.2 -0 0.1-0.1 0 0 -0.10.1 0 0 0 -0.1-0.10.1 0.1-0.1 1 0.2 0.2 0.2 0.3-0.1 0 -0.8-0.5-0.1-0.3-0.4 0 0.1 -0 0 -0 0.1-0.2 0 -0.1 -0 0.1 -0 -0 -0 -0 0 -0 -0 -0 0 0 0 -0 0.1 -0 0 0 -0 -0 0 0 -0 0 -0 -0 -0 0 -0 -0 -0 0 0 -0 0 -0 -0 -0 -0 -0 -0 0 -0 -0 0 0 0 -0 -0 0
0 0.1 0.1 0.1 -0 -0 0 -0.1-0.10.1 0.1 -0 0.1-0.1-0.1-0.10.2 1 0.1 0 0.2-0.1 0 -0.2-0.4 -0 0 -0.1 -0 -0 0.1 -0 0 0 0.1-0.10.1 0 -0 0.1 0 0.1 0 -0 0.1 0 0.1 -0 0 0.1 -0 -0.1 -0 0 0 0 -0 -0.1 0 -0 -0 0.1 -0 -0 -0.1 0 0 -0.1 0 0 -0 -0 -0 -0 -0 0 0 -0 0 -0 0 0 0 0 -0 -0 -0

-0.1 -0 -0 0 0.2 -0 -0.10.1 0 -0.1 0 -0.2 0 0.1 0.1 0 0.2 0.1 1 0.1-0.1-0.1 -0 -0.1-0.1-0.6 -0 0 0 -0 0.1 0 0 0.1 -0 -0 -0.1 0 -0 0 -0.1 -0 -0.1 -0 -0 -0 0 0 -0 0 -0.1 -0 0 0 0 -0 -0 0 -0 0 -0 0 0 -0 0 -0 -0 0 0 -0 -0 0 -0 -0 0 0 0 -0 0.1 -0 -0 0 0 0 -0 0 0
0 0 -0 0 0.1-0.1 0 -0 0 0 -0.1 0 -0.1 0 -0 -0 0.2 0 0.1 1 0.2 -0 0 -0.2 -0 -0.1-0.7-0.2 0 0 0 -0 0 -0.10.1 0.1-0.2 -0 0 0.3 0.3-0.1 0 0.1-0.1 0 0 -0.1-0.1 -0 -0 0 0 0 0 -0 0 0 -0 0 0 0 -0 0 -0 -0 0 -0 -0 -0 0 0 -0 0 0 -0 0 -0 -0 0 -0 0 0 -0 -0 -0 0

0.3-0.1-0.1 -0 -0 0.1 0.3-0.2 0 0.1-0.10.2 0 -0.1-0.2-0.10.3 0.2-0.10.2 1 0.4 0.1-0.3-0.10.1-0.2-0.4 0 -0 -0.10.1-0.1-0.40.2 0.1 -0 -0 0 0.3 0.4 0.1 0.1 0 0.2 0.1 0.1 0.1 0 -0 -0.1 -0 -0 0 0.1 0 0 -0.1 0 -0 0 0.1 -0 0 -0.1 0 0 -0 0 0 0 -0 -0 -0 -0 0 0 0 -0 -0 -0 0 0 -0 0 -0 -0
0.6 -0 -0.1 0 -0.10.1 0.3-0.6 0 0.1-0.10.1 0 -0.3-0.7 -0 -0.1-0.1-0.1 -0 0.4 1 0.1 -0 0.2 0.1 -0 -0 0 -0.1 -0 -0.1-0.1-0.40.4 0.1 0.1 -0 -0.10.3 0.2 0.1 0.1 -0 0.1 0.1 0.1 0 0 -0 -0.1-0.1 0 0 -0 0 0 -0 0 0 0 0 0 0 -0 0 0 0 0 -0 0 -0 0 0 0 0 -0 0 -0 0 0 -0 -0 -0 0 0 -0
0 0.1 -0 -0.1 0 0 -0 -0 -0.1 0 -0.1 0 -0 -0 -0 -0.5 0 0 -0 0 0.1 0.1 1 -0 -0 -0.1 -0 -0.1 0 0 -0 0 -0 -0 0 -0 0 0 0 0 0.1 -0 0.1 -0 -0 0.1 0 -0 -0 0 -0 -0 0 0 -0 -0 0 0 -0 0 0 -0 -0 0 0 -0 0.1 0 0 -0 0 0 0 0 0.1 0 -0 0 0 0 0 0 0 0 0 0 -0

0.1 0 -0.1 0 -0 -0 0 -0.1 -0 -0.2 -0 0 0.1 -0 -0.10.1-0.8-0.2-0.1-0.2-0.3 -0 -0 1 0.6 0.2 0.3 0.6 -0 -0.1 0 -0.1 0 0.1 0.1 -0 0.1 0 -0.1 -0 -0.1 0 0 -0 0 -0 0 -0 -0 0 0 -0.1 0 -0 -0 0 0 -0 -0 0 -0 0 0 0 -0 -0 0 0 0 0 -0 -0 0 0 0 0 0.1 0 0 -0 0 -0 -0 0 0 0 -0
0.3 0.1-0.2 0 -0 -0 0.1-0.2-0.1 -0 -0.2 0 -0 -0.1-0.2 0 -0.5-0.4-0.1 -0 -0.10.2 -0 0.6 1 0.3 0.2 0.5 -0 -0.1 -0 -0.1-0.1-0.10.2 0.1 0.1 0 -0.10.1 0 -0 0.1 -0 -0 0.1 -0 -0 0 -0 -0 0 0 -0 -0 -0 0 0 -0 0 -0 -0 -0 0 -0 -0 0 0 0 -0.1 0 0 -0 0 0 0 -0 0 0 -0 0 -0 -0 -0 0 0 -0
0.2 0.1 0 0.1-0.2 0 0.1-0.2-0.1 0 -0 0.2 0 -0.2-0.2 -0 -0.1 -0 -0.6-0.10.1 0.1-0.10.2 0.3 1 0.2 0.2 0 -0.1-0.1 -0 -0.10.1 0 -0 0.1 0 -0 0 -0.1 0 0.1 0 -0 0.1-0.1-0.1 -0 0.1 0.1 0 -0 -0 -0 0 -0 0 0 -0 -0 -0 -0 -0 0 -0 -0 -0 -0 0 0 -0 -0 0 -0 -0 0 -0 -0 -0 0 -0 -0 -0 -0 -0 -0
0.1 0 -0 0 -0.10.1 0 -0.1 -0 -0.1 -0 0 0.1-0.1-0.1 0 -0.3 0 -0 -0.7-0.2 -0 -0 0.3 0.2 0.2 1 0.3-0.1 -0 -0.1 -0 -0.10.2 -0 -0.10.2 -0 -0 -0.2-0.40.1 0 -0.10.1 -0 0 0.1 0 0.1 0 -0.1 0 -0 -0 0 -0 -0 -0 0 -0 -0 0 -0 -0 -0 0 -0 0 0 -0 -0.1 -0 0 -0 -0 0 -0 -0 -0 0 -0 -0 -0 0 0 -0.1
0.1 0 -0.1 0 0 -0.1 0 -0.1 -0 -0 0.1-0.1 0 -0.3-0.10.1-0.4-0.1 0 -0.2-0.4 -0 -0.10.6 0.5 0.2 0.3 1 0 -0.20.1-0.20.1 0.1 0.2 -0 0.1 0 -0.3-0.2-0.3 0 0 -0.1 0 -0 0 0 -0 0 0 -0.1 0 0 -0 0 0 0 0 0 0 -0 -0 0 0 0 -0 0.1 0 0 -0 -0.1 0 0 0 -0 0 0 -0 -0 0 0 -0.1 -0 0 0.1 -0
0 0 -0 0 0.1 0.1 0 -0 0 0 0 -0 -0.1 -0 -0 -0.1 0 -0 0 0 0 0 0 -0 -0 0 -0.1 0 1 -0 0.4 0 -0.1 0 0 -0.2-0.20.3 0.1 0 0 -0 0 0.1 -0 0 0 -0.1 -0 0 -0 0.1-0.1 0 -0 -0 0 -0 0 -0.1 0 0 -0 0 -0 -0 -0.1 -0 0 0 0 0 -0 0 -0 -0 0 0 0 -0 0 0 -0 -0 0 0 0

-0.1 -0 0 -0.1 -0 0 -0.10.1 0 0 -0 0.1 0.2 0.5 0.1 0.1 0.1 -0 -0 0 -0 -0.1 0 -0.1-0.1-0.1 -0 -0.2 -0 1 -0 0.8 0 0.1-0.30.1 -0 -0.20.9 0.1 0.2 -0 -0 -0.1 -0 0 0.1-0.1-0.1-0.1-0.1-0.2 0 0 -0 -0 0 0.1-0.1 0 0 -0 0 -0 0.1 -0 0 -0 -0 -0 0 0.1-0.1 0 0 0 0 -0 0 -0 -0 -0 0 -0 -0 -0 0
-0 0 0 -0 0.1 0 0 -0 -0 -0 0.1 -0 0.1 -0 0 -0 -0 0.1 0.1 0 -0.1 -0 -0 0 -0 -0.1-0.10.1 0.4 -0 1 -0 0.3 -0 0.2-0.3-0.20.2 0 0.1 0 0 0.1 0 0.1 0.1 0 0 0.1 -0 0 0 -0 0 0 -0 0 0 -0 -0 0 0.1 -0 0 -0 -0 -0 -0 -0 0.1 -0 0 -0 0 -0 -0 0 0 0 0 0.1 0 -0.1 -0 0 0.1 0

-0.1 -0 -0 -0.1 -0 0 -0.10.1 0 0 0 0.2 0.2 0.4 0 0 0 -0 0 -0 0.1-0.1 0 -0.1-0.1 -0 -0 -0.2 0 0.8 -0 1 0.1 0.1-0.2 0 -0.1-0.30.9 0.1 0.2 -0 -0.1-0.1 0 -0 0 -0.1 -0 -0.1-0.1-0.1 0 0 -0 -0 0 0 -0 0 0 -0 -0 -0 0 -0.1 0 -0 -0 -0 0 0.1-0.1 0 -0 -0 -0 -0 -0 -0 -0 0 0 -0 -0 -0 0
-0 -0 -0 -0.1 0 -0.1-0.1 0 0 -0 0 -0.10.1 0 0 -0 -0 0 0 0 -0.1-0.1 -0 0 -0.1-0.1-0.10.1-0.1 0 0.3 0.1 1 -0 0 -0 -0.1-0.20.1 -0 0.1-0.1 -0 0.1-0.1 -0 0.1 -0 0 -0 0 0 0 0 0 -0 -0 0 0 -0 0 0 -0.1 0 0 0 0 -0 -0.1 -0 0 0 -0 0 -0 -0 0 -0 0 0 0 -0 -0 0 0 0 0

-0.30.1 0.1 0 0 -0 -0.20.2 0 -0.10.1 -0 0 0.2 0.2 -0 0.1 0 0.1-0.1-0.4-0.4 -0 0.1-0.10.1 0.2 0.1 0 0.1 -0 0.1 -0 1 -0.2-0.2 -0 0.1 0.1-0.3-0.4 -0 0 -0 -0.1 -0 -0.1-0.1-0.10.1 0.1 0.1 0 0.1 -0 0 -0 0 0 0 0 -0 -0 -0 0.1 0 -0 0 -0.10.1 -0 0 -0.1 0 0 -0 0.1 -0 0 0 -0 0.1 0.1 0.1 -0 -0.10.1
0.4 -0 -0.10.1-0.1 -0 0.3-0.3 -0 0.1 0 0.1 0.1-0.4-0.3 -0 -0.20.1 -0 0.1 0.2 0.4 0 0.1 0.2 0 -0 0.2 0 -0.30.2-0.2 0 -0.2 1 -0.1 0 -0.1-0.30.4 0.2 0.1 0.1-0.10.1 0.1 0 -0.1 0 -0 -0 -0.1 0 0 0 0 0 -0.1 0 -0 0 0 -0 0 -0.10.1 0 0 0 -0 0 -0.10.1 -0 0 0 -0 0 -0 0 0 0 -0 -0 0 0 0
0.1-0.1 -0 -0 0 -0 0 -0 0 0 -0.1 -0 -0 0 -0 0.1 0 -0.1 -0 0.1 0.1 0.1 -0 -0 0.1 -0 -0.1 -0 -0.20.1-0.3 0 -0 -0.2-0.1 1 0 -0.1 0 -0 0.1-0.1 0 0.1 -0 -0 0 0 0 -0.10.1 0.1 0 -0 -0 -0 0 0 0 0 0 -0 -0 -0 0 0 0 0 -0 -0.1 0 0 0.1 -0 0 0 -0.1 -0 0 0 0 -0 -0 -0 0 0.1 -0
0.1 0 -0 0.1 -0 -0 0 -0.1 -0 0 -0 0 0 -0 -0.1 -0 -0.10.1-0.1-0.2 -0 0.1 0 0.1 0.1 0.1 0.2 0.1-0.2 -0 -0.2-0.1-0.1 -0 0 0 1 -0 -0.1-0.1-0.20.1-0.1 -0 0.1-0.1 -0 -0.1-0.10.1-0.1 0 0 -0.1-0.1 0 -0 0 -0 0 -0 -0.1 0 -0.1 0 -0 0 -0 -0 -0 -0 -0 0 0 -0 -0 -0 -0 0 -0 0 -0 -0 0 -0 0 -0
0 0 0 0.2 0.3 0.2 0.1 0 -0 -0 -0 -0 -0 -0 0 -0.1 -0 0 0 -0 -0 -0 0 0 0 0 -0 0 0.3-0.20.2-0.3-0.20.1-0.1-0.1 -0 1 -0.2-0.1-0.2-0.10.1 0 -0.20.1 -0 -0.1-0.10.1 0 0 0 -0 -0.1 0 0 0 -0 0 -0 -0.1 0 0 0.1 -0 -0 -0 -0 0.1 -0 0 -0 0 -0 -0.10.1 0 0 0 0 0 -0.1 0 -0 0.1 0

-0.1 -0 0 -0.1 -0 0 -0.10.1 0 0.1 0 0.2 0.2 0.5 0 0 0.1 -0 -0 0 0 -0.1 0 -0.1-0.1 -0 -0 -0.30.1 0.9 0 0.9 0.1 0.1-0.3 0 -0.1-0.2 1 0.1 0.2-0.1 -0 -0.1 -0 0 0 -0.2-0.1-0.1-0.1-0.1 0 0 -0 -0 0 0 -0.1 0 0 -0 -0 -0 0.1-0.10.1 -0 -0.1 -0 0 0.1-0.1 0 -0 -0 0 -0 0 -0 -0 0 0 -0 -0 -0 0
0.2 0 -0.1 0 -0 0 0.2-0.2 -0 0.1 -0 0.1 0.1-0.1-0.2 -0 -0 0.1 0 0.3 0.3 0.3 0 -0 0.1 0 -0.2-0.2 0 0.1 0.1 0.1 -0 -0.30.4 -0 -0.1-0.10.1 1 0.8 0.2 0 -0.10.2 0.1 0.1 -0 -0 -0 -0.1-0.1 -0 0 0.1 0 0 -0.1 0 -0.1 0 0.1 0 0 -0.1 0 -0 0 0.1 -0 0 -0 0 -0 0 0 -0 0 -0 -0 -0 -0 0 -0 0 -0 -0
0.2 0 -0.1 0 -0 0 0.2-0.2 -0 0.1-0.10.1 0 -0 -0.2 -0 -0 0 -0.10.3 0.4 0.2 0.1-0.1 0 -0.1-0.4-0.3 0 0.2 0 0.2 0.1-0.40.2 0.1-0.2-0.20.2 0.8 1 0 0 -0 0.1 0.1 0 0 -0 -0.1-0.1-0.1 -0 0 0.1 -0 0 -0 0 -0 0 0.1 0 0 -0.1 0 0 0 0 -0.1 0 0 0 -0 -0 0 -0.1 0 -0 -0 0 -0 0 -0.1 -0 -0 -0
0.1 -0 0 -0 -0.1-0.1 0 -0 0 -0 0 0 -0 -0.1 -0 -0 -0 0.1 -0 -0.10.1 0.1 -0 0 -0 0 0.1 0 -0 -0 0 -0 -0.1 -0 0.1-0.10.1-0.1-0.10.2 0 1 -0.3 0 0.8-0.20.2 0.4 0.3 0.6-0.3-0.1-0.10.1 0.2 0.2-0.1-0.20.1-0.10.1 0.2 0.2-0.1-0.20.1-0.20.1 0.2 0.1-0.1-0.1 0 -0.1 -0 -0 0.1 0 -0 -0.1 -0 -0 -0 0 0 0 -0.1
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Figure 45: Correlations between parameters for SHAP and IG
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12.8 Comparison of Angular Loss Functions
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Figure 46: Directional reconstruction performance as a function of where the particle came from for the considered
loss functions

12.9 From MC to Data

Generalizing Monte Carlo trained ML-methods to real data is far from trivial. In this project, no special ef-
fort to achieve this have been made, however, a simple examination of whether our models are applicable
to data is made. In Fig. 27 the correlation between predictions made by GGConv and Retro is compared
for MC and data predictions. Ie. for our models to be applicable to data the red contours should lie on the
black heatmatp, which it does. This gives an indication of that our results carry over to data. No changes
were made for the predictions for data, except for the feature pulse width, which was scaled by a factor
2 since it, rather peculiarly, lay predominantly at the values 2 and 16. Furthermore, since the only values
pulse width can take in MC is 1 and 8, the data sample was sub-sampled for events for which no DOM
had a pulse width feature other than 2 or 16, effectively cutting the sample in half. The data sample used
is the full IC86.11 data sample, which totals ∼ 64.000 events [58].
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Figure 47: Applicability of the Monte Carlo trained ML methods in real data. Shown are the contour-plot of the
correlation between predictions made by GGConv and Retro for energy, θ, φ and their uncertainties in MC. The
underlying heatmap contains the same but in real data. The data sample size is significantly smaller. The interval
of the axes are chosen to include the inner 90% of the sample and are equal for MC and data
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13 Honorable Mentions

Opening Angle Limit

One desired aspect of the project that we did not accomplish was to have a true information limit to work
with. This could have been done by using the Pythia package (https://pythia.org/, to estimate the initial
opening angle as a function of energy. This opening angle would then act as a hard information limit.

Covariance Prediction

We attempted to also predict the covariance between the directional reconstruction predictions, on top of
the individual uncertainties, however, we did not have time to finish it. It would have been included in
the moon shadow analysis, had it been successful.

Self-Attention Graph Pooling

Due to a gut feeling, the group worked tirelessly on an implementation of the SAGPool architecture [59]:

Figure 48: The SAGPool layer

As this lies within the Honorable Mentions-section, it can be surmised that the work was ultimately unsuc-
cessful.

Cartesian Space and Number of Triggered DOMs

When considering the extremes of uncertainties, some interesting structure shows. As can be seen in
Figs. 49- 52, the events that are most uncertain mostly lie outside DeepCore. We hypothesise the events
that only trigger the lower part has particles travelling outside the detector, leaving only an uncertain
Cherenkov-wake coming in from the bottom. It can also be seen that the most certain events has a high
number of triggered sensors. This was expected as we usually see a proportionality between regressional
abilities of our models and number of DOMs.
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Figure 49: The density of center of charge in x-z for the best/worst percent of regressions from StateFarm

Figure 50: The density of center of charge in x-z for the best/worst percent of regressions from GGConv
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Figure 51: The density of center of charge in x-z for the best/worst percent of regressions from LifeGuard

Figure 52: The density of center of charge in x-z for the best/worst percent of regressions from AntHill

Training 1000 Monkeys with Typewriters

Due to a lack of computational power this did not work: Copenhagen Zoo would only lend us 5 gorillas
but due to high demand on the institute the gorilla quota to bachelor students was very limited.
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Nearest Neighbours on a PCA axis

In this project the Nearest neighbours was used to generate the adjacency matrix. However since there
is no given edges in the actual data, the choice of generating them is arbitrary and can be chosen to give
the best results. One other investigated method was to use the Principle Component Analysis to find the
primary axis from the position of the activated DOMs and the projection on this axis could now be used,
such that pulses close to each other along this axis was connected in the graph. This method was tried on
the MuonGun data and gave approximately the same accuracy as the nearest neighbour approach, but
no improvement. Thus this idea was demoted to an honorable mention.

Elasticity

Classifying antineutrinos from neutrinos, could have been helped by regressing the elasticity in the decay
(Fig. 53). This was looked at, but in trying to keep this project streamlined it was not worked on. Given
more time this seems like an obvious next step for the ensemble model, as the addition of a PID-identifier
was an improvement.

Figure 53: Distribution of elasticity, showing that if one could regress elasticity, one could most likely distinguish
between να and ν̄α.

Wrapped Cauchy Distribution as Angular Loss

A loss function that can be employed in order to mitigate the trouble with not hitting the edges of the
zenith distribution is the Wrapped Cauchy Distribution, an analogue to the Polar vMF but for the Cauchy
Distribution given by.

fWC(θ; µ, γ) =
∞

∑
n=−∞

γ

π(γ2 + (θ − µ + 2πn)2)
− π < θ < π (45)

Here however, the overall precision goes down drastically, and so was not included in the main project
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Reweighting

In an attempt to fix predicted neutrino zenith distribution, we attempted to weight the azimuth and
zenith such that the phase space had uniform density, but unfortunately this was unsuccessful.

Directed-in-time Graphs

A possible add-on is to make the graph directed, by having nodes only be connected one way, with some
kind of physical rationale behind this choice. One such method that was attempted was a forward-in-time
graph, where any pair of neighbours were asymmetricized in time such that only the one that had a signal
first in time could connect to the other. Thus, it would be impossible to do message passing backwards
in time, effectively letting it work like a temporal CNN.

Kolmogorov-Smirnov Correctional Loss Term

Another approach to force the predicted distribution to approach the target distribution was to add a
Kolmogorov-Smirnov statistic term to the loss function. The idea is to compare the cumulative probability
distribution of the predicted with the truth. Now the Kolmogorov-Smirnov statistic is given as the biggest
difference of the two distributions. To do this differentiable and numerically, this statistic was done by
using search sort of both distributions with respect to the sorted list of them combined. Now the biggest
difference in the sorting can be converted to the Kolmogorov-Smirnov and was added to the loss. The
implementation is heavily inspired by the scipy 2-sample KS-test.
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